有趣的ζ(n)

这些公式着实有趣,分享在此
ζ ( 2 ) + ζ ( 3 ) + ⋯ + ζ ( n ) + ∑ x = 1 ∞ 1 x ( x + 1 ) n = n \boxed{\color{blue}{\zeta(2)+\zeta(3)+\cdots+\zeta(n)+\sum_{x=1}^{\infty}\frac{1}{{x}(x+1)^n}=n}} ζ(2)+ζ(3)++ζ(n)+x=1x(x+1)n1=n

∑ x = 1 ∞ ( 1 x 2 + 1 x 3 + 1 x 4 + ⋯ + 1 x n + 1 x ( x + 1 ) n ) = n \boxed{\color{blue}{\sum_{x=1}^{\infty}\left( \frac{1}{x^2}+\frac{1}{x^3}+\frac{1}{x^4}+\cdots+\frac{1}{x^n}+ \frac{1}{{x}(x+1)^n}\right)=n}} x=1(x21+x31+x41++xn1+x(x+1)n1)=n

∑ x = 1 ∞ 1 x ( x + 1 ) = 1 \boxed{\color{blue}{\sum_{x=1}^{\infty}{\frac{1}{x(x+1)}}=1}} x=1x(x+1)1=1

∑ x = 1 ∞ 1 x ( x + 1 ) 2 = 2 − ζ ( 2 ) \boxed{\color{blue}{\sum_{x=1}^{\infty}{\frac{1}{x(x+1)^2}}=2-\zeta(2)}} x=1x(x+1)21=2ζ(2)

∑ x = 1 ∞ 1 x ( x + 1 ) 3 = 3 − ζ ( 3 ) − ζ ( 2 ) \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x}(x+1)^3}=3-\zeta(3)-\zeta(2)}} x=1x(x+1)31=3ζ(3)ζ(2)

∑ x = 1 ∞ 1 x ( x + 1 ) 4 = 4 − ζ ( 4 ) − ζ ( 3 ) − ζ ( 2 ) \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x}(x+1)^4}=4-\zeta(4)-\zeta(3)-\zeta(2)}} x=1x(x+1)41=4ζ(4)ζ(3)ζ(2)

∑ x = 1 ∞ 1 x ( x + 1 ) 5 = 5 − ζ ( 5 ) − ζ ( 4 ) − ζ ( 3 ) − ζ ( 2 ) \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x}(x+1)^5}=5-\zeta(5)-\zeta(4)-\zeta(3)-\zeta(2)}} x=1x(x+1)51=5ζ(5)ζ(4)ζ(3)ζ(2)

∑ x = 1 ∞ 1 x ( x + 1 ) 6 = 6 − ζ ( 6 ) − ζ ( 5 ) − ζ ( 4 ) − ζ ( 3 ) − ζ ( 2 ) \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x}(x+1)^6}=6-\zeta(6)-\zeta(5)-\zeta(4)-\zeta(3)-\zeta(2)}} x=1x(x+1)61=6ζ(6)ζ(5)ζ(4)ζ(3)ζ(2)

⋯ ⋯ \cdots\cdots

∑ x = 1 ∞ 1 x ( x + 1 ) n = n − ζ ( n ) − ⋯ − ζ ( 3 ) − ζ ( 2 ) \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x}(x+1)^n}=n-\zeta(n)-\cdots-\zeta(3)-\zeta(2)}} x=1x(x+1)n1=nζ(n)ζ(3)ζ(2)


∑ x = 0 ∞ 1 ( 2 x + 1 ) 2 = π 2 8 \sum_{x=0}^{\infty}{\frac{1}{(2x+1)^2}}=\frac{\pi^2}{8} x=0(2x+1)21=8π2

ζ ( 2 ) = 3 4 ∑ x = 0 ∞ 1 ( 2 x + 1 ) 2 = ∑ x = 0 ∞ 1 ( 1 − 1 / 2 2 ) ( 2 x + 1 ) 2 \zeta(2)=\frac{3}{4}\sum_{x=0}^{\infty}{\frac{1}{(2x+1)^2}}=\sum_{x=0}^{\infty}{\frac{1}{(1-1/2^2)(2x+1)^2}} ζ(2)=43x=0(2x+1)21=x=0(11/22)(2x+1)21

= ∑ x = 0 ∞ 1 ( 2 x + 1 ) 2 − ( x + 1 / 2 ) 2 = ∑ x = 0 ∞ 1 3 ( x + 1 / 2 ) 2 =\sum_{x=0}^{\infty}{\frac{1}{(2x+1)^{2}-(x+1/2)^{2}}}=\sum_{x=0}^{\infty}{\frac{1}{3(x+1/2)^{2}}} =x=0(2x+1)2(x+1/2)21=x=03(x+1/2)21

ζ ( 2 ) = ∑ x = 0 ∞ 1 3 ( x + 1 / 2 ) 2 \boxed{\color{blue}{\zeta(2)=\sum_{x=0}^{\infty}{\frac{1}{3(x+1/2)^{2}}}}} ζ(2)=x=03(x+1/2)21

ζ ( 3 ) = 8 7 ∑ x = 0 ∞ 1 ( 2 x + 1 ) 3 = ∑ x = 0 ∞ 1 ( 1 − 1 / 2 3 ) ( 2 x + 1 ) 3 \zeta(3)=\frac{8}{7}\sum_{x=0}^{\infty}{\frac{1}{(2x+1)^3}}=\sum_{x=0}^{\infty}{\frac{1}{(1-1/2^3)(2x+1)^3}} ζ(3)=78x=0(2x+1)31=x=0(11/23)(2x+1)31

ζ ( 3 ) = ∑ x = 0 ∞ 1 7 ( x + 1 / 2 ) 3 = ∑ x = 1 ∞ 1 x 3 \boxed{\color{blue}{\zeta(3)=\sum_{x=0}^{\infty}{\frac{1}{7(x+1/2)^{3}}=\sum_{x=1}^{\infty}{\frac{1}{x^3}}}}} ζ(3)=x=07(x+1/2)31=x=1x31

ζ ( 3 ) = ∑ x = 0 ∞ 8 7 ( 2 x + 1 ) 3 = ∑ x = 1 ∞ 1 x 3 \boxed{\color{blue}{\zeta(3)=\sum_{x=0}^{\infty}{\frac{8}{7(2x+1)^{3}}=\sum_{x=1}^{\infty}{\frac{1}{x^3}}}}} ζ(3)=x=07(2x+1)38=x=1x31

ζ ( 4 ) = 16 15 ∑ x = 0 ∞ 1 ( 2 x + 1 ) 4 = ∑ x = 0 ∞ 1 ( 1 − 1 / 2 4 ) ( 2 x + 1 ) 4 \zeta(4)=\frac{16}{15}\sum_{x=0}^{\infty}{\frac{1}{(2x+1)^4}}=\sum_{x=0}^{\infty}{\frac{1}{(1-1/2^4)(2x+1)^4}} ζ(4)=1516x=0(2x+1)41=x=0(11/24)(2x+1)41

ζ ( 4 ) = ∑ x = 0 ∞ 1 15 ( x + 1 / 2 ) 4 \boxed{\color{blue}{\zeta(4)=\sum_{x=0}^{\infty}{\frac{1}{15(x+1/2)^{4}}}}} ζ(4)=x=015(x+1/2)41

ζ ( 4 ) = ∑ x = 0 ∞ 2 4 ( 2 4 − 1 ) ( 2 x + 1 ) 4 = ∑ x = 1 ∞ 1 x 4 \boxed{\color{blue}{\zeta(4)=\sum_{x=0}^{\infty}{\frac{2^4}{(2^4-1)(2x+1)^{4}}=\sum_{x=1}^{\infty}{\frac{1}{x^4}}}}} ζ(4)=x=0(241)(2x+1)424=x=1x41

ζ ( 5 ) = 32 31 ∑ x = 0 ∞ 1 ( 2 x + 1 ) 5 = ∑ x = 0 ∞ 1 ( 1 − 1 / 2 5 ) ( 2 x + 1 ) 5 \zeta(5)=\frac{32}{31}\sum_{x=0}^{\infty}{\frac{1}{(2x+1)^5}}=\sum_{x=0}^{\infty}{\frac{1}{(1-1/2^5)(2x+1)^5}} ζ(5)=3132x=0(2x+1)51=x=0(11/25)(2x+1)51

ζ ( 5 ) = ∑ x = 0 ∞ 1 31 ( x + 1 / 2 ) 5 \boxed{\color{blue}{\zeta(5)=\sum_{x=0}^{\infty}{\frac{1}{31(x+1/2)^{5}}}}} ζ(5)=x=031(x+1/2)51

ζ ( 6 ) = 64 63 ∑ x = 0 ∞ 1 ( 2 x + 1 ) 6 = ∑ x = 0 ∞ 1 ( 1 − 1 / 2 6 ) ( 2 x + 1 ) 6 \zeta(6)=\frac{64}{63}\sum_{x=0}^{\infty}{\frac{1}{(2x+1)^6}}=\sum_{x=0}^{\infty}{\frac{1}{(1-1/2^6)(2x+1)^6}} ζ(6)=6364x=0(2x+1)61=x=0(11/26)(2x+1)61

ζ ( 6 ) = ∑ x = 0 ∞ 1 63 ( x + 1 / 2 ) 6 \boxed{\color{blue}{\zeta(6)=\sum_{x=0}^{\infty}{\frac{1}{63(x+1/2)^{6}}}}} ζ(6)=x=063(x+1/2)61

ζ ( 7 ) = 128 127 ∑ x = 0 ∞ 1 ( 2 x + 1 ) 7 = ∑ x = 0 ∞ 1 ( 1 − 1 / 2 7 ) ( 2 x + 1 ) 7 \zeta(7)=\frac{128}{127}\sum_{x=0}^{\infty}{\frac{1}{(2x+1)^7}}=\sum_{x=0}^{\infty}{\frac{1}{(1-1/2^7)(2x+1)^7}} ζ(7)=127128x=0(2x+1)71=x=0(11/27)(2x+1)71

ζ ( 7 ) = ∑ x = 0 ∞ 1 127 ( x + 1 / 2 ) 7 \boxed{\color{blue}{\zeta(7)=\sum_{x=0}^{\infty}{\frac{1}{127(x+1/2)^{7}}}}} ζ(7)=x=0127(x+1/2)71

ζ ( n ) = 2 n 2 n − 1 ∑ x = 0 ∞ 1 ( 2 x + 1 ) n = ∑ x = 0 ∞ 2 n ( 2 n − 1 ) ( 2 x + 1 ) n \boxed{\color{blue}{\zeta(n)=\frac{2^n}{2^n-1}\sum_{x=0}^{\infty}{\frac{1}{(2x+1)^n}}=\sum_{x=0}^{\infty}{\frac{2^n}{(2^n-1)(2x+1)^n}}}} ζ(n)=2n12nx=0(2x+1)n1=x=0(2n1)(2x+1)n2n

ζ ( n ) = ∑ x = 1 ∞ x − n = ∑ x = 0 ∞ 1 ( 2 n − 1 ) ( x + 1 / 2 ) n \boxed{\color{blue}{\zeta(n)=\sum_{x=1}^{\infty}{x^{-n}}=\sum_{x=0}^{\infty}{\frac{1}{(2^n-1)(x+1/2)^{n}}}}} ζ(n)=x=1xn=x=0(2n1)(x+1/2)n1

∑ x = 1 n x = n ( n + 1 ) 2 = ∫ 0 n ( x + 1 / 2 ) d x \boxed{\color{blue}{\sum_{x=1}^{n}{x}=\frac{n(n+1)}{2}=\int_{0}^{n}(x+1/2)dx}} x=1nx=2n(n+1)=0n(x+1/2)dx

级数的部分和与伯努利数

求和新方法

我们再来看看伯努利多项式与 ζ ( n ) \zeta(n) ζ(n)是何关系:

φ 1 ( x ) = x + 1 / 2 \varphi_{1}(x)=x+1/2 φ1(x)=x+1/2

φ 2 ( x ) = x 2 + x + 1 / 6 \varphi_{2}(x)=x^2+x+1/6 φ2(x)=x2+x+1/6

φ 3 ( x ) = x 3 + 3 2 x 2 + 1 2 x \varphi_{3}(x)=x^3+\frac{3}{2}x^2+\frac{1}{2}x φ3(x)=x3+23x2+21x

⋯ ⋯ \cdots\cdots

φ 1 ( x ) = x + 1 / 2 \varphi_{1}(x)=x+1/2 φ1(x)=x+1/2 是伯努利数 B 1 = 1 2 B_{1}=\frac{1}{2} B1=21 时伯努利多项式之一。换句话说:用其中之一就能表示全部 ζ ( n ) , n ≥ 2 \zeta(n),n\geq2 ζ(n),n2

黎曼猜想的平凡零点不存在

∑ x = 1 ∞ 1 x 2 ( x + 1 ) 0 = ζ ( 2 ) \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{2}}(x+1)^0}=\zeta(2)}} x=1x2(x+1)01=ζ(2)

∑ x = 1 ∞ 1 x 2 ( x + 1 ) = ζ ( 2 ) − 1 \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{2}}(x+1)}=\zeta(2)-1}} x=1x2(x+1)1=ζ(2)1

∑ x = 1 ∞ 1 x 2 ( x + 1 ) 2 = 2 ζ ( 2 ) − 3 \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{2}}(x+1)^2}=2\zeta(2)-3}} x=1x2(x+1)21=2ζ(2)3

∑ x = 1 ∞ 1 x 2 ( x + 1 ) 3 = 3 ζ ( 2 ) + ζ ( 3 ) − 6 \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{2}}(x+1)^3}=3\zeta(2)+\zeta(3)-6}} x=1x2(x+1)31=3ζ(2)+ζ(3)6

∑ x = 1 ∞ 1 x 2 ( x + 1 ) 4 = 4 ζ ( 2 ) + 2 ζ ( 3 ) + ζ ( 4 ) − 10 \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{2}}(x+1)^4}=4\zeta(2)+2\zeta(3)+\zeta(4)-10}} x=1x2(x+1)41=4ζ(2)+2ζ(3)+ζ(4)10

∑ x = 1 ∞ 1 x 2 ( x + 1 ) 5 = 5 ζ ( 2 ) + 3 ζ ( 3 ) + 2 ζ ( 4 ) + ζ ( 5 ) − 15 \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{2}}(x+1)^5}=5\zeta(2)+3\zeta(3)+2\zeta(4)+\zeta(5)-15}} x=1x2(x+1)51=5ζ(2)+3ζ(3)+2ζ(4)+ζ(5)15

∑ x = 1 ∞ 1 x 2 ( x + 1 ) 6 = 6 ζ ( 2 ) + 4 ζ ( 3 ) + 3 ζ ( 4 ) + 2 ζ ( 5 ) + ζ ( 6 ) − 21 \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{2}}(x+1)^6}=6\zeta(2)+4\zeta(3)+3\zeta(4)+2\zeta(5)+\zeta(6)-21}} x=1x2(x+1)61=6ζ(2)+4ζ(3)+3ζ(4)+2ζ(5)+ζ(6)21

∑ x = 1 ∞ 1 x 2 ( x + 1 ) n = n ζ ( 2 ) + ( n − 2 ) ζ ( 3 ) + ( n − 3 ) ζ ( 4 ) + ⋯ + 2 ζ ( n − 1 ) + ζ ( n ) − n ( n + 1 ) 2 \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{2}}(x+1)^n}=n\zeta(2)+(n-2)\zeta(3)+(n-3)\zeta(4)+\cdots+2\zeta(n-1)+\zeta(n)-\frac{n(n+1)}{2}}} x=1x2(x+1)n1=nζ(2)+(n2)ζ(3)+(n3)ζ(4)++2ζ(n1)+ζ(n)2n(n+1)

∑ x = 1 ∞ 1 x ( x + 1 ) n = − ζ ( 2 ) − ζ ( 3 ) − ζ ( 4 ) − ⋯ − ζ ( n − 1 ) − ζ ( n ) + n \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x}(x+1)^n}=-\zeta(2) -\zeta(3)-\zeta(4) -\cdots-\zeta(n-1)-\zeta(n)+n}} x=1x(x+1)n1=ζ(2)ζ(3)ζ(4)ζ(n1)ζ(n)+n

∑ x = 1 ∞ 1 x 3 ( x + 1 ) 0 = ζ ( 3 ) \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{3}}(x+1)^0}=\zeta(3)}} x=1x3(x+1)01=ζ(3)

∑ x = 1 ∞ 1 x 3 ( x + 1 ) = ζ ( 3 ) − ζ ( 2 ) + 1 \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{3}}(x+1)}=\zeta(3)-\zeta(2)+1}} x=1x3(x+1)1=ζ(3)ζ(2)+1

∑ x = 1 ∞ 1 x 3 ( x + 1 ) 2 = ζ ( 3 ) − 3 ζ ( 2 ) + 4 \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{3}}(x+1)^2}=\zeta(3)-3\zeta(2)+4}} x=1x3(x+1)21=ζ(3)3ζ(2)+4

∑ x = 1 ∞ 1 x 3 ( x + 1 ) 3 = 10 − π 2 = − 6 ζ ( 2 ) + 10 \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{3}}(x+1)^3}=10-\pi^2=-6\zeta(2)+10}} x=1x3(x+1)31=10π2=6ζ(2)+10

∑ x = 1 ∞ 1 x 3 ( x + 1 ) 4 = − 10 ζ ( 2 ) − 2 ζ ( 3 ) − ζ ( 4 ) + 20 \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{3}}(x+1)^4}=-10\zeta(2)-2\zeta(3)-\zeta(4)+20}} x=1x3(x+1)41=10ζ(2)2ζ(3)ζ(4)+20

∑ x = 1 ∞ 1 x 3 ( x + 1 ) 5 = − 15 ζ ( 2 ) − 3 ζ ( 3 ) − 2 ζ ( 4 ) − ζ ( 5 ) + 35 \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{3}}(x+1)^5}=-15\zeta(2)-3\zeta(3)-2\zeta(4)-\zeta(5)+35}} x=1x3(x+1)51=15ζ(2)3ζ(3)2ζ(4)ζ(5)+35

∑ x = 1 ∞ 1 x 2 ( x + 1 ) 5 = 5 ζ ( 2 ) + 3 ζ ( 3 ) + 2 ζ ( 4 ) + ζ ( 5 ) − 15 \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{2}}(x+1)^5}=5\zeta(2)+3\zeta(3)+2\zeta(4)+\zeta(5)-15}} x=1x2(x+1)51=5ζ(2)+3ζ(3)+2ζ(4)+ζ(5)15

二阶等差级数的前 n n n 项和

S n = 1 + 3 + 6 + 10 + ⋯ + n ( n + 1 ) 2 = n + n ( n − 1 ) + n ( n − 1 ) ( n − 2 ) 6 = n ( n + 1 ) ( n + 2 ) 6 = ∫ 0 n x 2 2 + x + 1 3 d x S_{n}=1+3+6+10+\cdots+\frac{n(n+1)}{2}\\=n+n(n-1)+\frac{n(n-1)(n-2)}{6}\\=\frac{n(n+1)(n+2)}{6}=\int_{0}^{n}\frac{x^2}{2}+x+\frac{1}{3}dx Sn=1+3+6+10++2n(n+1)=n+n(n1)+6n(n1)(n2)=6n(n+1)(n+2)=0n2x2+x+31dx

n > 3 n>3 n>3
∑ x = 1 ∞ 1 x 3 ( x + 1 ) n = − n ( n + 1 ) ζ ( 2 ) / 2 − ( n − 2 ) ζ ( 3 ) − ( n − 3 ) ζ ( 4 ) − ⋯ − 2 ζ ( n − 1 ) − ζ ( n ) + n ( n + 1 ) ( n + 2 ) 6 \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{3}}(x+1)^n}=-n(n+1)\zeta(2)/2-(n-2)\zeta(3)-(n-3)\zeta(4)-\cdots-2\zeta(n-1)-\zeta(n)+\frac{n(n+1)(n+2)}{6}}} x=1x3(x+1)n1=n(n+1)ζ(2)/2(n2)ζ(3)(n3)ζ(4)2ζ(n1)ζ(n)+6n(n+1)(n+2)

∑ x = 1 ∞ 1 x 2 ( x + 1 ) n = n ζ ( 2 ) + ( n − 2 ) ζ ( 3 ) + ( n − 3 ) ζ ( 4 ) + ⋯ + 2 ζ ( n − 1 ) + ζ ( n ) − n ( n + 1 ) 2 \boxed{\color{blue}{\sum_{x=1}^{\infty}\frac{1}{{x^{2}}(x+1)^n}=n\zeta(2)+(n-2)\zeta(3)+(n-3)\zeta(4)+\cdots+2\zeta(n-1)+\zeta(n)-\frac{n(n+1)}{2}}} x=1x2(x+1)n1=nζ(2)+(n2)ζ(3)+(n3)ζ(4)++2ζ(n1)+ζ(n)2n(n+1)

n ≤ 3 n\leq3 n3

∑ x = 1 ∞ ( 1 x 3 ( x + 1 ) n + 1 x 2 ( x + 1 ) n ) = − n ( n − 1 ) 2 ζ ( 2 ) + ζ ( 3 ) + n ( n + 1 ) ( n − 1 ) 6 \boxed{\color{blue}{\sum_{x=1}^{\infty}\left( \frac{1}{{x^{3}}(x+1)^n}+\frac{1}{{x^{2}}(x+1)^n} \right)=-\frac{n(n-1)}{2}\zeta(2)+\zeta(3)+\frac{n(n+1)(n-1)}{6}}} x=1(x3(x+1)n1+x2(x+1)n1)=2n(n1)ζ(2)+ζ(3)+6n(n+1)(n1)

n > 3 n>3 n>3
∑ x = 1 ∞ ( 1 x 3 ( x + 1 ) n + 1 x 2 ( x + 1 ) n ) = − n ( n − 1 ) 2 ζ ( 2 ) + n ( n + 1 ) ( n − 1 ) 6 \boxed{\color{blue}{\sum_{x=1}^{\infty}\left( \frac{1}{{x^{3}}(x+1)^n}+\frac{1}{{x^{2}}(x+1)^n} \right)=-\frac{n(n-1)}{2}\zeta(2)+\frac{n(n+1)(n-1)}{6}}} x=1(x3(x+1)n1+x2(x+1)n1)=2n(n1)ζ(2)+6n(n+1)(n1)

ζ ( 2 ) + ζ ( 3 ) + ⋯ + ζ ( n ) + ∑ x = 1 ∞ 1 x ( x + 1 ) n = n \zeta(2)+\zeta(3)+\cdots+\zeta(n)+\sum_{x=1}^{\infty}\frac{1}{{x}(x+1)^n}=n ζ(2)+ζ(3)++ζ(n)+x=1x(x+1)n1=n
不知道有没有算错,如错了请指出。谢谢!

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值