VaR、CoVaR、delta CoVaR计算方法综述 案例与代码

本文详细介绍了计算CoVaR的三种方法:分位数回归法、Copula函数法和DCC-GARCH模型。分位数回归法适用于线性结构,对极值问题有较好处理,而Copula函数法和DCC-GARCH模型则能刻画非线性相关关系。CoVaR用于度量金融市场的风险溢出效应,弥补了VaR方法的不足。文中通过案例分析了这些模型在风险溢出评估中的应用及优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 关注公众号卧新实验室,并回复关键数字获取本文帮助文档。例如:20001

      在金融市场上,金融机构的风险不仅受其自身因素的影响,还受其他金融机构风险的冲击,这种机构之间的风险波动传导机制即为风险溢出效应,然而,传统的度量风险的主流方法VaR(在险价值)只能衡量机构自身的风险,却无法捕捉到风险溢出效应的影响。在08年危机之后,VaR方法受到了人们的责备和质疑,而Adian和Brunnermeier于2009年提出的CoVaR方法,为风险管理实践提供了新的思路。

      条件风险价值(CoVaR)能够很好地度量风险溢出效应,是度量系统性风险的有效指标之一。计算CoVaR有多种方法,其原理不尽相同,需要合理选用方能有效评估系统性风险:

      ① 分位数回归法;② Copula函数法;③ DCC-GARCH模型。

      这三种方法是比较典型的三种方法。本文从不同的几个案例对这三种计算方法分别做了研究和测算了CoVaR。

一、分位数回归法

      由于现实中的金融数据往往不呈正态分布,而是呈“尖峰厚尾”分布,因此传统的线性回归方法在估计金融计量模型时失效。而且,传统的线性回归方法是基于均值进行估计,不能准确反映总体分布各个不同部分之间的关系。分位数回归的提出有效地弥补了传统线性回归的这一缺陷。

      分位数回归根据变量的不同分位数进行回归,可以得到全部分位数的回归模型。它将基于均值相关性的模型扩展至关注尾部相关性。而金融风险一般恰恰是由尾部事件(tail event)引起的,因此,分位数回归的方法广泛应用于金融风险的测度。

      同时与普通的回归估计方法不同的是,分位数回归模型特别适用于存在异方差性的模型,能够更加细致地刻画条件分布。并且它对分布的假设要求不高,估计量也不易受到异常值的影响,参数估计结果比最小二乘估计更加有效、稳健。

      根据CoVaR(条件风险价值)的定义,不难发现CoVaR本质上是VaR,而VaR本质上是一个分位数,因此CoVaR实际上也是一个分位数(条件分位数)。通过设定相应的置信水平,利用回归技术就可以得到线性关联关系下金融机构i风险价值对应的系统性风险价值。

(一)基于分位数回归的静态CoVaR计算

评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值