VaR、CoVaR、delta CoVaR计算方法综述 案例与代码

本文详细介绍了计算CoVaR的三种方法:分位数回归法、Copula函数法和DCC-GARCH模型。分位数回归法适用于线性结构,对极值问题有较好处理,而Copula函数法和DCC-GARCH模型则能刻画非线性相关关系。CoVaR用于度量金融市场的风险溢出效应,弥补了VaR方法的不足。文中通过案例分析了这些模型在风险溢出评估中的应用及优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 关注公众号卧新实验室,并回复关键数字获取本文帮助文档。例如:20001

      在金融市场上,金融机构的风险不仅受其自身因素的影响,还受其他金融机构风险的冲击,这种机构之间的风险波动传导机制即为风险溢出效应,然而,传统的度量风险的主流方法VaR(在险价值)只能衡量机构自身的风险,却无法捕捉到风险溢出效应的影响。在08年危机之后,VaR方法受到了人们的责备和质疑,而Adian和Brunnermeier于2009年提出的CoVaR方法,为风险管理实践提供了新的思路。

      条件风险价值(CoVaR)能够很好地度量风险溢出效应,是度量系统性风险的有效指标之一。计算CoVaR有多种方法,其原理不尽相同,需要合理选用方能有效评估系统性风险:

      ① 分位数回归法;② Copula函数法;③ DCC-GARCH模型。

      这三种方法是比较典型的三种方法。本文从不同的几个案例对这三种计算方法分别做了研究和测算了CoVaR。

一、分位数回归法

      由于现实中的金融数据往往不呈正态分布,而是呈“尖峰厚尾”分布,因此传统的线性回归方法在估计金融计量模型时失效。而且,传统的线性回归方法是基于均值进行估计,不能准确反映总体分布各个不同部分之间的关系。分位数回归的提出有效地弥补了传统线性回归的这一缺陷。

      分位数回归根据变量的不同分位数进行回归,可以得到全部分位数的回归模型。它将基于均值相关性的模型扩展至关注尾部相关性。而金融风险一般恰恰是由尾部事件(tail event)引起的,因此,分位数回归的方法广泛应用于金融风险的测度。

      同时与普通的回归估计方法不同的是,分位数回归模型特别适用于存在异方差性的模型,能够更加细致地刻画条件分布。并且它对分布的假设要求不高,估计量也不易受到异常值的影响,参数估计结果比最小二乘估计更加有效、稳健。

      根据CoVaR(条件风险价值)的定义,不难发现CoVaR本质上是VaR,而VaR本质上是一个分位数,因此CoVaR实际上也是一个分位数(条件分位数)。通过设定相应的置信水平,利用回归技术就可以得到线性关联关系下金融机构i风险价值对应的系统性风险价值。

(一)基于分位数回归的静态CoVaR计算

### VaRCoVaR 的 Python 实现 #### Value at Risk (VaR) VaR 是一种用于衡量金融资产或投资组合在特定时间范围内可能损失的最大金额的方法。以下是使用历史模拟方法计算 VaR 的 Python 代码: ```python import numpy as np import pandas as pd def calculate_var(data, confidence_level=0.95): """ 计算给定数据集的历史模拟VaR。 参数: data (pd.Series): 资产的日收益率序列 confidence_level (float): 置信水平,默认为0.95 返回: float: 给定置信水平下的VaR值 """ sorted_returns = np.sort(data) index = int((1-confidence_level) * len(sorted_returns)) return abs(sorted_returns[index]) # 示例用法 returns = pd.Series(np.random.normal(0, 0.01, 252)) # 假设年化波动率为1% var_value = calculate_var(returns) print(f"VaR at 95% confidence level is {var_value:.4f}") ``` #### Conditional Value at Risk (CoVaR) CoVaR 表示当一家金融机构处于困境时,另一家机构的风险价值。这里展示如何通过线性回归来估算静态 CoVaR。 ```python from sklearn.linear_model import LinearRegression def calculate_covar(systemic_data, individual_data, confidence_level=0.95): """ 使用分位数回归计算CoVaR。 参数: systemic_data (pd.Series): 整体市场的日收益率序列 individual_data (pd.Series): 单个公司的日收益率序列 confidence_level (float): 置信水平,默认为0.95 返回: float: 给定置信水平下的CoVaR值 """ X = systemic_data.values.reshape(-1, 1) y = individual_data.values.reshape(-1, 1) quantile_reg = QuantReg(y, add_constant(X)).fit(q=(1-confidence_level)) beta_0 = quantile_reg.params[0] beta_1 = quantile_reg.params[1] var_systemic = calculate_var(systemic_data, confidence_level) covar = beta_0 + beta_1 * var_systemic return covar # 示例用法 market_returns = pd.Series(np.random.normal(0, 0.01, 252)) company_returns = market_returns + np.random.normal(0, 0.005, 252) covar_value = calculate_covar(market_returns, company_returns) print(f"CoVaR at 95% confidence level is {covar_value:.4f}") ``` #### Delta-CoVaR (∆CoVaR) ΔCoVaR 测量的是由于某个实体的财务状况恶化而导致其他实体面临更大风险的程度变化。可以通过比较不同状态下的 CoVaR 来获得 ΔCoVaR。 ```python def delta_covar(covar_normal, covar_stressed): """ 计算Delta-CoVaR。 参数: covar_normal (float): 正常状态下计算得到的CoVaR covar_stressed (float): 应力测试条件下计算得到的CoVaR 返回: float: Delta-CoVaR值 """ return covar_stressed - covar_normal normal_market_returns = pd.Series(np.random.normal(0, 0.01, 252)) stressed_market_returns = normal_market_returns - 0.02 # 模拟压力情景 delta_covar_value = delta_covar( calculate_covar(normal_market_returns, company_returns), calculate_covar(stressed_market_returns, company_returns) ) print(f"Delta-CoVaR value is {delta_covar_value:.4f}") ``` #### Percentage Change in CoVaR (%∆CoVaR) %ΔCoVaR 反映了相对于正常情况的变化比例。 ```python def percentage_delta_covar(delta_covar, covar_normal): """ 计算Percentage Delta-CoVaR。 参数: delta_covar (float): 已经计算好的Delta-CoVaR covar_normal (float): 正常情况下计算得到的CoVaR 返回: float: 百分数形式表示的Percentage Delta-CoVaR """ return (delta_covar / covar_normal) * 100 percentage_change = percentage_delta_covar(delta_covar_value, covar_value) print(f"Percentage change in CoVaR is {percentage_change:.2f}%") ```
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值