课程首页在:http://blog.csdn.net/sxhelijian/article/details/11890759,内有完整教学方案及资源链接
【项目5-复数模板类】
阅读P314的例10.1。该例实现了一个复数类,但是美中不足的是,复数类的实部和虚部都固定只能是double型的。可以通过模板类的技术手段,设计Complex,使实部和虚部的类型为定义对象时用的实际类型。
(1)要求类成员函数在类外定义。
(2)在此基础上,再实现减法、乘法和除法
你可以使用的main()函数如下:
int main( )
{
Complex<int> c1(3,4),c2(5,-10),c3; //实部和虚部是int型
c3=c1.complex_add(c2);
cout<<"c1+c2=";
c3.display( );
Complex<double> c4(3.1,4.4),c5(5.34,-10.21),c6; //实部和虚部是double型
c6=c4.complex_add(c5);
cout<<"c4+c5=";
c6.display( );
//下面测试减法、乘法和除法
……
return 0;
}
参考解答:
#include <iostream>
using namespace std;
template<class T> //类声明前加模板的声明
class Complex
{
public:
Complex( )
{
real=0;
imag=0;
}
Complex(T r,T i)
{
real=r; //类声明中的每一个T,将被对象定义时提供的实际类型代替
imag=i;
}
Complex complex_add(Complex &c2);
Complex complex_minus(Complex &c2);
Complex complex_multiply(Complex &c2);
Complex complex_divide(Complex &c2);
void display( );
private:
T real; //数据成员的类型,也将被对象定义时提供的实际类型代替
T imag;
};
//复数相加:(a+bi)+(c+di)=(a+c)+(b+d)i.
template<class T> //每一个成员函数的定义前,必须要声明类模板
Complex<T> Complex<T>::complex_add(Complex<T> &c2) //使用了模板的类,将不再独立使用,其类名的完整表示为“类模板名<虚拟类型参数>”
{
Complex<T> c; //凡用到类名处也用“类模板名<虚拟类型参数>”形式;本题中求两个复数的和,自然要产生一个新的复数对象
c.real=real+c2.real;
c.imag=imag+c2.imag;
return c;
}
//复数相减:(a+bi)-(c+di)=(a-c)+(b-d)i.
template <class T>
Complex<T> Complex<T>::complex_minus(Complex <T> &c2)
{
Complex <T> c;
c.real=real-c2.real;
c.imag=imag-c2.imag;
return c;
}
//复数相乘:(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
template <class T>
Complex<T> Complex<T>::complex_multiply(Complex <T> &c2)
{
Complex <T> c;
c.real=real*c2.real-imag*c2.imag;
c.imag=imag*c2.real+real*c2.imag;
return c;
}
//复数相除:(a+bi)/(c+di)=(ac+bd)/(c^2+d^2) +(bc-ad)/(c^2+d^2)i
template <class T>
Complex<T> Complex<T>::complex_divide(Complex <T> &c2)
{
Complex <T> c;
T d=c2.real*c2.real+c2.imag*c2.imag;
c.real=(real*c2.real+imag*c2.imag)/d; //此处有危险未排除:除法溢出
c.imag=(imag*c2.real-real*c2.imag)/d;
return c;
}
template<class T>
void Complex<T>::display( )
{
cout<<"("<<real<<","<<imag<<"i)"<<endl;
}
int main( )
{
Complex<int> c1(3,4),c2(5,-10),c3; //定义对象时,用“类模板名<实际类型名>”形式
cout<<"c1=";
c1.display( );
cout<<"c2=";
c2.display( );
c3=c1.complex_add(c2);
cout<<"c1+c2=";
c3.display( );
c3=c1.complex_minus(c2);
cout<<"c1-c2=";
c3.display( );
c3=c1.complex_multiply(c2);
cout<<"c1*c2=";
c3.display( );
c3=c1.complex_divide(c2);
cout<<"c1/c2=";
c3.display( );
cout<<endl;
Complex<double> c4(3.1,4.4),c5(5.34,-10.21),c6; //定义对象时,用“类模板名<实际类型名>”形式
cout<<"c4=";
c4.display( );
cout<<"c5=";
c5.display( );
c6=c4.complex_add(c5);
cout<<"c4+c5=";
c6.display( );
c6=c4.complex_minus(c5);
cout<<"c4-c5=";
c6.display( );
c6=c4.complex_multiply(c5);
cout<<"c4*c5=";
c6.display( );
c6=c4.complex_divide(c5);
cout<<"c4/c5=";
c6.display( );
return 0;
}
【项目5拓展(选做)-模板类中使用友元函数】
友元函数提供了一种非成员函数访问私有数据成员的途径,模板类使类中的数据成员的类型变得灵活,这两种技术可以结合起来用。要求在项目5的基础上能够支持用友员函数实现的加法。用于测试的main()函数如下:
int main( )
{
Complex<int> c1(3,4),c2(5,-10),c3;
c3=c1.complex_add(c2); //调用成员函数支持加法运算,有一个形参
cout<<"c1+c2=";
c3.display( );
Complex<double> c4(3.1,4.4),c5(5.34,-10.21),c6;
c6=c4.complex_add(c5); //调用成员函数支持加法运算,有一个形参
cout<<"c4+c5=";
c6.display( );
Complex<int> c7;
c7=add_complex(c1,c2); //调用友员函数支持加法运算,有两个形参
cout<<"c1+c2=";
c7.display( );
Complex<double> c8;
c8=add_complex(c4,c5); //调用友员函数支持加法运算,有两个形参
cout<<"c4+c5=";
c8.display( );
return 0;
}
参考解答:
#include <iostream>
using namespace std;
template<class T1>
class Complex
{
public:
Complex( )
{
real=0;
imag=0;
}
Complex(T1 r,T1 i)
{
real=r;
imag=i;
}
Complex complex_add(const Complex &c2); //实现加法的成员函数
template<class T2> friend Complex<T2> add_complex(const Complex<T2> &c1, const Complex<T2> &c2); //利用了模板的外部函数要作为友元函数,注意声明方式:类声明中也必须给出模板声明。这一行程序可以在CodeBlocks中调试通过,将T2换成T1,VS2008也接受
void display( );
private:
T1 real;
T1 imag;
};
//成员函数的实现
template<class T1>
Complex<T1> Complex<T1>::complex_add(const Complex<T1> &c2)
{
Complex<T1> c;
c.real=real+c2.real;
c.imag=imag+c2.imag;
return c;
}
//友元函数的实现
template<class T1>
Complex<T1> add_complex(const Complex<T1> &c1, const Complex<T1> &c2)
{
Complex<T1> c;
c.real=c1.real+c2.real;
c.imag=c1.imag+c2.imag;
return c;
}
template<class T1>
void Complex<T1>::display( )
{
cout<<"("<<real<<","<<imag<<"i)"<<endl;
}
int main( )
{
Complex<int> c1(3,4),c2(5,-10),c3;
c3=c1.complex_add(c2); //调用成员函数支持加法运算,有一个形参
cout<<"c1+c2=";
c3.display( );
Complex<double> c4(3.1,4.4),c5(5.34,-10.21),c6;
c6=c4.complex_add(c5); //调用成员函数支持加法运算,有一个形参
cout<<"c4+c5=";
c6.display( );
Complex<int> c7;
c7=add_complex(c1,c2); //调用友员函数支持加法运算,有两个形参
cout<<"c1+c2=";
c7.display( );
Complex<double> c8;
c8=add_complex(c4,c5); //调用友员函数支持加法运算,有两个形参
cout<<"c4+c5=";
c8.display( );
return 0;
}
==================== 迂者 贺利坚 CSDN博客专栏================= |== IT学子成长指导专栏 专栏文章的分类目录(不定期更新) ==| |== C++ 课堂在线专栏 贺利坚课程教学链接(分课程年级) ==| |== 我写的书——《逆袭大学——传给IT学子的正能量》 ==| ===== 为IT菜鸟起飞铺跑道,和学生一起享受快乐和激情的大学 ===== |