通识与专业结合的大学之路

本文探讨了中国大学通识教育的进展与问题,指出在培养方案中通识教育的重要性及其面临的障碍,强调了深入理解通识教育价值、超越功利性与实用性的必要性,以及如何在传统专业教育中融入通识教育元素,促进学生的全面发展。

  历经坎坷的中国大学,总体上是落后的。在三十多年真正的发展历程中,不断在进步,问题也不断。通识教育在大学中的进展,也仍处在初级阶段,课程体系不科学、学生的选择空间小、重视不够等多种问题仍然存在。在各个专业的培养方案中,有了通识教育的成分,方案的执行面临诸多障碍。

  障碍之一,是学生的不理解,社会的不理解。增进人才全面发展的课程,和专业无关的课程,和找工作、考研无关的课程,这就是没有用的课程?!我在开全校选修课“大学生学习指导”时,有一位同学在报告中写道:“尽管这是一门副课,……”这一个“副课”显露出了应试教育最可怕的余毒,一个“尽管”,似乎为这门他自己选择的关于学会学习的课程给足了面子。在大学中,不少通识教育类课程作为选修课,是逃课一族必逃的课程,也成为大学中最容易取得学分的课程。

  大学中,还有不少通识教育的任务在各专业的基础课和专业基础课中完成。例如,高等数学,是所有自然学科之母,也是承载逻辑思维训练的课程,几乎所有工科学生都要修读的大学物理课,是实证思维的代表,而诸如计算机类专业中的“算法基础”之类的课程,那是计算科学中的核心之一。然而,这些不能直接体现到实际工作中“动手”层面的内容,是遭遇大学生冷遇的重点对象。此处的“动手”本来应当作“实践”讲的,在科技发达的当今,这种实践的核心是需要脑力作为支撑,而实际上,将动手仅理解成就是动那两个手掌、十根指头的大学生,不在少数。有一则消息谈到了某著名高校的著名新闻院系削减文史哲课程,而将人文素养让位于网页设计、动漫设计等新潮的“实用”的课程。在我和本专业同行的交流中发现,有些基础性很强的课程和实践环节在培养方案中悄悄地让到了可有可无的位置。同行们似乎很无奈地解释:为了让某些学生能毕业。我也在参与学院的培养方案修订工作,我理解,但心情复杂。老师们做出这种决定可以理解为“顺应民意”,内含着一种逃避,也不见是全是坏事,但这对于高等教育中的所有成员——老师和学生,都是一件很悲哀的事情。

  所以,对于有志于成才的大学生,尊重培养方案中涉及的教学环节,搁置课程有用无用的话题,深入进去,终会找到其中的价值。这是想要从通识教育中获得最大收益的学子,应该做出的选择。也要感谢高等教育多样化的进展,前述培养方案降低要求,只是给出一些人一种选择,一种能够比较容易地取得毕业证的一种选择。对于能够对形势有所掌控的同学而言,培养方案中的另外一种选择也在那里静静等候,其中的“通”与“专”,等待有心人去撷取。只是从此,就让那一纸证书,真正让位于你本身的经历,以及在此过程中打造而来的内在品质。

  这一番感慨发自于在大学中糊涂度日的同学,有些甚至于连专业教育的一般要求都不去主动靠近。现代大学的设计本来是瞄准着不只专一业,有人偏做成了一业也不专。摆脱专业教育的狭窄,主动走进通识教育的广袤,是我们的需要做出的选择。

  在大学中,放下功利,无论在培养方案中明确的通识教育环节,还是自主安排的学习内容,甚至就在传统的专业教育环节,大学生都可以找到通识的味道。在通识教育中,没有专业的硬性划分,提供的选择是多样化的。而学生们通过多样化的选择,得到了自由的、顺其自然的成长。超越功利性与实用性,习得学问家、思想家应该有的独立人格与独立思考的可贵品质,这正是通识教育的终极追求。教育不是车间里的生产流水线,同样的课程体系,同样的教学环节,经由不同的、个性的学习,开发和挖掘出不同个体身上的潜质与精神品格,孕育出的是各具特点的真正的“人”,而不是同一个模具中拓出的“产品”。 





本文来源:《逆袭大学——传给IT学子正能量》一审过后,要压缩篇幅,将整理过的文字登在些处共享。

==================== 迂者 贺利坚 CSDN博客专栏=================

|==  IT学子成长指导专栏  专栏文章分类目录(不定期更新)    ==|

|== C++ 课堂在线专栏   贺利坚课程教学链接(分课程年级)   ==|

======== 为IT菜鸟起飞铺跑道,和学生一起享受快乐和激情的大学 =======

内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导仿真实践,利用人工神经网络对复杂的非线性关系进行建模逼近,提升机械臂运动控制的精度效率。同时涵盖了路径规划中的RRT算法B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿高精度轨迹跟踪控制;④结合RRTB样条完成平滑路径规划优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析神经网络训练,注重理论推导仿真实验的结合,以充分理解机械臂控制系统的设计流程优化策略。
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迂者-贺利坚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值