OpenCV: kalman滤波的代码段

本文介绍了一个疲劳检测项目AviTest中使用的Kalman滤波算法,该算法能够实现对眼球位置的有效追踪和锁定。通过具体代码展示如何设置Kalman滤波器的状态数、测量数,并初始化相关矩阵来实现预测和修正过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

序言:在我的疲劳检测工程 AviTest中!显示框为320*240,使用OpenCV的kalman滤波算法,可以实现简单的锁相追踪-实现对眼球的位置锁定。

代码如下:

CvPoint WishchinKalman( IplImage* Image,CvPoint pCenter){

    CvPoint correctMat;
    correctMat.x = 0;
    correctMat.y = 0;
    const int stateNum   = 4;  
    const int measureNum = 2;  
    const int winHeight = 240;  
    const int winWidth  = 320;  

    IplImage* img    = cvCreateImage(cvSize(winWidth,winHeight),8,3);
    //cvCvtColor(Image,img,CV_GRAY2BGR);
    img = cvCloneImage(Image);

    CvKalman* kalman = cvCreateKalman( stateNum, measureNum, 0 );//state(x,y,detaX,detaY)  
    CvMat* process_noise = cvCreateMat( stateNum, 1, CV_32FC1 );  
    CvMat* measurement = cvCreateMat( measureNum, 1, CV_32FC1 );//measurement(x,y)  
    CvRNG rng = cvRNG(-1);  
    float A[stateNum][stateNum] ={//transition matrix    状态转移矩阵为什么用这个?????wishchin
        1,0,1,0,  
        0,1,0,1,  
        0,0,1,0,  
        0,0,0,1  
    };  

    memcpy( kalman->transition_matrix->data.fl,A,sizeof(A));  
    cvSetIdentity(kalman->measurement_matrix,cvRealScalar(1) );  
    cvSetIdentity(kalman->process_noise_cov,cvRealScalar(1e-5));  
    cvSetIdentity(kalman->measurement_noise_cov,cvRealScalar(1e-1));  
    cvSetIdentity(kalman->error_cov_post,cvRealScalar(1));  
    cvRandArr(&rng,kalman->state_post,CV_RAND_UNI,cvRealScalar(0),cvRealScalar(winHeight>winWidth?winWidth:winHeight));  
    CvFont font;  
    cvInitFont(&font,CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,1);  

    const CvMat* prediction=cvKalmanPredict(kalman,0);  
    measurement->data.fl[0]=(float)pCenter.x;  
    measurement->data.fl[1]=(float)pCenter.y;

    //4.update  
    const CvMat* correction=cvKalmanCorrect( kalman, measurement );       
    correctMat = cvPoint((int)correction->data.fl[0],(int)correction->data.fl[1]);
    ////关键接口 wishchin
    //draw   
    cvSet(img,cvScalar(255,255,255,0));  
    //cvCircle(img,correctMat,5,CV_RGB(0,255,0),3);//predicted point with green  

    //cvReleaseImage(&img);
    return correctMat;
    //return 0;  
}


以下是使用Python和OpenCV实现卡尔曼滤波的示例代码: ```python import numpy as np import cv2 # 初始化卡尔曼滤波kalman = cv2.KalmanFilter(4, 2) kalman.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32) kalman.transitionMatrix = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) kalman.processNoiseCov = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) * 0.03 kalman.measurementNoiseCov = np.array([[1, 0], [0, 1]], np.float32) * 0.1 # 初始化视频捕捉 cap = cv2.VideoCapture(0) while True: # 读取一帧 ret, frame = cap.read() # 对帧进行预处理 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) # 检测边缘 edges = cv2.Canny(gray, 50, 150, apertureSize=3) # 检测直线 lines = cv2.HoughLinesP(edges, 1, np.pi/180, 100, minLineLength=100, maxLineGap=10) # 如果检测到直线 if lines is not None: for line in lines: x1, y1, x2, y2 = line[0] # 使用卡尔曼滤波器估计下一帧的线段 prediction = kalman.predict() measurement = np.array([[np.float32(x1)], [np.float32(y1)]]) kalman.correct(measurement) # 绘制估计线段 x1p, y1p, x2p, y2p = np.int32(prediction) cv2.line(frame, (x1p, y1p), (x2p, y2p), (0, 255, 0), 2) # 显示结果 cv2.imshow('frame', frame) # 按下Esc键退出 if cv2.waitKey(1) == 27: break # 清理 cap.release() cv2.destroyAllWindows() ``` 这段代码使用OpenCV捕获实时视频流,并使用卡尔曼滤波器对检测到的直线进行估计。卡尔曼滤波器的参数在初始化时设置。首先,我们设置卡尔曼滤波器的状态向量和观测向量的维数(在本例中为4和2)。然后,我们设置测量矩阵、转移矩阵和过程噪声协方差矩阵。最后,我们设置测量噪声协方差矩阵。在每一帧中,我们使用卡尔曼滤波器来估计下一帧的线段,并绘制估计线段。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值