【机器人和人工智能——自主巡航赛项】进阶篇

案例要求

在这里插入图片描述

在这里插入图片描述

创建地图

./1-gmapping.sh在这里插入图片描述
把多个launch文件融合在sh文件里面

rviz仿真

rviz是rose集成的可视化界面,查看机器人的各项数据,
在这里插入图片描述

保存地图

roslaunch robot_slam save_map.launch

在这里插入图片描述

坐标点定位

要让机器人移动到对应位置,给予坐标信息(X,Y,偏转角度),信息保存于multi_goal.launch
在这里插入图片描述

建图位置和起点位置要重合

小车的坐标系:X轴朝左,单位m;Y轴朝上,单位m;偏转角度逆时针为正,单位°

在这里插入图片描述
调用坐标点的命令

navi.goto(goals[第几个坐标])

识别训练

分别打开两个终端启动两个launch文件
启动摄像头

roslaunch usb_cam usb_cam-test.launch

启动识别文件

rolaunch find_object_2d find_object_2d.launch

在这里插入图片描述


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
手动给图像做分类,z表示是命名名称

主逻辑理解

代码是
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

语音播报

使用os.system('mplayer %s' % music1_path)这行代码,通过系统调用来执行mplayer命令并播放指定的音乐文件。music_path指定了要播放的音乐文件路径
在这里插入图片描述
查看当前路径:pwd
在这里插入图片描述
语音播放识别成功:
在这里插入图片描述

没有听到声音:查看扬声器信道
没有运行成功:查看代码格式

可以用TTS文本转语音

在这里插入图片描述

模块匹配

在这里插入图片描述self.find_sub = rospy.Subscriber('/object_position',Point,self.find_cb);
创建了一个订阅者(Subscriber),用于接受名为/object.position的话题发布的geometry_msgs.msg.Point类型的消息,并将其传递给self.find_cb方法进行处理。

rospy.Subscriber:创建一个订阅者对象
'/object_position:指令要订阅的话题名称
Point:指令要订阅的消息类型,即geometry_msgs.msg.Point
'self.find_cb’是回调函数,当从/object_position话题接受到消息是,该函数将调用来处理接收到的消息

通过这行代码,节点将订阅/object_position话题,一旦有新的geometry_msgs.msg.Point类型的消息发布到该话题上,self.find_cb将会被调用来处理接收到的消息数据

列出当前系统中所有已发布和已订阅的话题:

rostopic list

查看名为 /object_position的话题上的消息:

rostopic echo /object_position

在这里插入图片描述
启动摄像头和识别软件

roslaunch usb_cam-test.launch
roslaunch find_object_2d find_object_2d.launch

在这里插入图片描述
代码具体含义:
在这里插入图片描述
在这里插入图片描述

二维码识别

在这里插入图片描述

代码具体含义:
在这里插入图片描述
在这里插入图片描述

多点导航

在这里插入图片描述
在这里插入图片描述

讲解视频

1.万创鑫诚.自主巡航方案分析
2.万创鑫诚.自主巡航实践

其余篇章

1.【机器人和人工智能——自主巡航赛项】基础篇
2.【机器人和人工智能——自主巡航赛项】动手实践篇

当涉及到使用Python编程解决万创鑫城巡航机器人的问题时,通常需要以下步骤来设计一个识别题目的解法结构: 1. **导入必要的库**: 首先,导入用于图像处理、计算机视觉和可能的机器学习的Python库,如`PIL`(Python Imaging Library)用于图像读取,`OpenCV`或`cv2`用于图像处理,以及`tensorflow`或`sklearn`等深度学习框架。 ```python import cv2 from PIL import Image ``` 2. **加载和预处理图像**: 加载机器人图片,并可能进行灰度化、缩放、裁剪等操作,以便于特征提取。 ```python image = Image.open('robot_image.jpg') gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) ``` 3. **特征检测和识别**: 使用特定算法(如Haar级联分类器、HOG+SVM或卷积神经网络)来检测目标物体(例如机器人)。如果是简单的形状匹配,可以使用轮廓分析;如果是复杂模式,可能需要训练模型。 ```python # 如果使用预训练模型 detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 替换为机器人模型路径 features = detector.detectMultiScale(gray_image) ``` 4. **判断和决策**: 根据特征检测的结果,做出机器人是否被找到的判断,并返回相应的结果。 ```python if features: print("巡航机器人被识别到") else: print("未发现巡航机器人") ``` 5. **错误处理和优化**: 添加适当的错误处理,比如检查文件路径是否存在,处理识别过程中的异常情况。 6. **完整代码示例**: 将以上步骤整合成函数或类,提供一个完整的用户调用入口。 ```python def detect_robot(image_path): try: # ... (所有上述代码) except Exception as e: print(f"识别失败: {e}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值