大语言模型原理基础与前沿 预训练Transformer扩大尺度的启示
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
近年来,随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了突破性进展。其中,基于预训练语言模型的大语言模型(Large Language Model, LLM)逐渐成为NLP领域的热点研究方向。LLM通过在大量无标签语料上进行预训练,学习到丰富的语言知识,能够实现下游任务的高效微调。本文将深入探讨LLM的原理、前沿技术以及预训练Transformer扩大尺度的影响。
1.2 研究现状
目前,LLM领域的研究主要集中在以下几个方面:
- 预训练模型架构:研究如何设计更有效的预训练模型架构,以提升模型的表达能力和泛化能力。
- 预训练目标函数:研究如何设计更有效的预训练目标函数,以更好地学习语言知识。
- 微调技术:研究如何利用少量标注数据对预训练模型进行微调,使其在下游任务上取得更好的性