大语言模型原理基础与前沿 预训练Transformer扩大尺度的启示

大语言模型原理基础与前沿 预训练Transformer扩大尺度的启示

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

1.1 问题的由来

近年来,随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了突破性进展。其中,基于预训练语言模型的大语言模型(Large Language Model, LLM)逐渐成为NLP领域的热点研究方向。LLM通过在大量无标签语料上进行预训练,学习到丰富的语言知识,能够实现下游任务的高效微调。本文将深入探讨LLM的原理、前沿技术以及预训练Transformer扩大尺度的影响。

1.2 研究现状

目前,LLM领域的研究主要集中在以下几个方面:

  1. 预训练模型架构:研究如何设计更有效的预训练模型架构,以提升模型的表达能力和泛化能力。
  2. 预训练目标函数:研究如何设计更有效的预训练目标函数,以更好地学习语言知识。
  3. 微调技术:研究如何利用少量标注数据对预训练模型进行微调,使其在下游任务上取得更好的性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值