LIMA
- 论文:LIMA: Less Is More for Alignment
- 要点:人工构建1K高质量样本用于对齐,高质量主要指输出的风格一致性,以及输入的多样性
LIMA是比较早提出Quality Over Quantity观点的论文。论文提出一个假设是模型的知识和能力几乎全部是预训练阶段注入的。而指令微调阶段的对齐只是学习和人类交互的回答形式。因此一个输入多样,输出形式一致的高质量指令数据集能帮模型快速学到回答形式。
指令数据集的构建方式是人工从Stack Exchange, wikiHow和Reddit里面分类筛选更高质量的问题和回答,来构建指令样本集。我们具体说下Stack Exchange样本的构建,其他两个思路是一致的
- 分类采样: 为了保证多样性,把Stack的分成75个科学类别和99个其他类别,从每个类别中采样200个问题
- 筛选:为了保证质量,在以上每个类别中筛选问题评分最高的,再筛选该问题中回答得分最高的
- 过滤:为了保证输出的一致性,过滤太长(4096字符)/太短(1200字符)的回答,过滤以第一人称回答,或者引用了其他回答的内容。以及对内容进行清洗只保留代码和文本部分。
- 样本构建:随机使用问题的标题或者描述作为输入,使用回答做为输出。
除了使用已有的QA数据,几位作者还人工构建了200条基于个人偏好随机创建的prompt,以及编写的回答,在回答编写过程中核心是注意回答风格的一致性。重要的事情说三遍,一致性,一致性,一致性。论文反复强调一致的回答风格可以加速模型收敛。
论文使用的是65B的LLAMA模型,1000条样本,微调了15个epoch,lr=1e-5, batch=32, max_seq_len =2048。最终是人工在验证集打分上,选择了5-10个epoch之间的checkpoint。
论文针对数据集的质量,数量和多样性进行了消融实验,如下图
- 多样性:相似质量和数量,输入指令多样性更高的stack exchange的效果优于输入相对单一的wikiHow数据集
- 质量:同等量级上过滤后质量更高的stack Exchange数据集微调的效果更好
- 数量:从质量过滤后单一的stack exchange中采样更高量级的训练样本,并不能显著带来效果提升。之前公认的样本数量越多越好,可能更多是数量提升带来的指令多样性提升。
当然论文选择的样本数本身并无非常大的参考意义,因为这个选择的基座模型,模型大小,数据本身的多样性都相关,所以需要具体模型具体分析。
ALPAGASUS
- 论文:AlpaGasus: Training A Better Alpaca with Fewer Data
- 代码:https://lichang-chen.github.io/AlpaGasus/
- 数据: https://github.com/gururise/AlpacaDataCleaned/
- 要点:模型自动化筛选高质量指令微调样本
论文起名终于从和动物纠缠不清,到开始上天入地,模型起名AlpaGasus=Alpaca+Pegasus,故名飞天羊驼,哈哈最近总会让人不由自主想到飞天茅台
对比LIMA,ALPAGASUS没有对什么是高质量进行很明确的定义,但是提出了自动化样本过滤的方案,成本更低,更简单粗暴。从原始52K的ALPACA样本中使用大模型自动筛选高质量的9K样本进行模型微调。
论文在以下4个测试集上进行评估,使用GPT-4给原始Alpaca和飞天羊驼进行偏好打分,胜率如下,在不同量级的训练样本上,飞天羊驼以80%+的胜率超越Alpaca,当训练样本在9K左右的时候,胜率最高~
自动样本过滤机制比较简单,就是使用如下Prompt,让Chatgpt给(instruction, input, response)的三元组样本进行打分,并根据最终的打分分布,选定4.5分作为阈值,筛选打分>4.5的9K样本用于下游模型微调。
论文还进行了消融实验,对比了不同的筛选阈值得到的不同训练样本量的影响,3k/6k/9k中9K的样本量级,模型效果最好,但超过后模型效果会有下降。延伸下大概就是高质量的数据越多越好,但低质量的数据越少越好。同时对比了随机采样9K作为作为对照组,效果是显著差于使用模型打分筛选出的9K样本。
自动化数据筛选看起来非常美好且梦幻,但笔者本人有一个疑问,论文使用chatgpt来筛选样本,又用GPT4作为评估,是否会引入bias,这个bias主要来自chatgpt和gpt4相对一致的偏好。这一点除非引入人工评估,或者多个大模型例如Claude之类同时进行最终的评估打分,否则个人感觉可能出现妈妈看自己的孩子咋看都好看的情况…
LTD
- 论文:Maybe Only 0.5% Data is Needed: A Preliminary Exploration of Low Training Data Instruction Tuning
- 要点:聚类过滤相似度高的样本,筛选多样性样本用于对齐
LTD的样本筛选中心放在多样性,在任务微调上只使用0.5%的训练样本,还比原有效果提升了2%。论文对多样性给出了更形象的描述就是用最少的样本,去近似刻画当前全部指令集的空间分布。这么一描述,其实答案已经呼之欲出了,跑不了cluster,KNN,k-center这些方案,论文实现如下
具体分成3个步骤
- Sample embedding: 把指令样向量化,这里论文是把指令+回答一同输入BERT模型进行编码,并且做了l2正则化,这样后续聚类计算距离就可以直接使用cosine距离
- Clustering:作者使用K-Means对所有指令样本进行聚类,不过个人更偏好aggolomerative clustering,毕竟k-means是密度聚类,而层次聚类是基于距离的,在文本聚类中距离是有明确含义的,可以更好保证不同cluster直接的粒度相对一致
- Corest Sampling:基于聚类结果选择有代表性的样本来构建指令集。我本以为论文会直接从每个cluster动进行随机采样,意料之外的是论文采用了贪心的K-center算法来选取更有代表性的数据点,算法如下。目标是找到K的中心点,使得所有点到距离最近的中心点的距离之和最小化。实现是先用聚类中心点作为起始中心点,遍历所有其他点找到离所有起始点距离最远的点,把这个点也加入中心点,然后多次重复以上过程。
除了以上介绍的论文之外,还有几篇论文思想也或有相似,包括以下Reference中的
- InstructionGPT-4:把多样性和质量进行综合打分的多模态微调模型
- Instruction Minning: 使用指令评估集推理Loss来对指令数据进行高质量筛选的
- Polite Flamingo:通过改写和重构构建高质量多模态模型输出数据
- Textbooks:编程任务上构建教科书级别质量的预训练数据,和对应的习题集数据用于微调效果显著超越StarCoder
话接上文的指令微调的样本优化方案,上一章是通过多样性筛选和质量过滤,对样本量进行缩减,主打经济实惠。这一章是通过扩写,改写,以及回译等半监督样本挖掘方案对种子样本进行扩充,提高种子指令样本的多样性和复杂度,这里我们分别介绍Microsoft,Meta和IBM提出的三个方案。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓