定积分的题型
定积分的定义
定积分的几何意义(f(x)的正负与定积分正负关系)
变上限积分在正负区间的关系
常见的基本几何意义
定积分积分区域对称时,奇函数与偶函数作用效果不同
奇函数为0,偶函数为两倍单侧积分
定积分存在充要条件
积分不等式
积分中值定理
积分上限函数的意义
变上限积分函数的性质
积分上限函数求导的四种情况
核心:变上限中的变量X不能出现在被积函数中.
变上限积分的等价与阶数
前置知识点——复合函数等价
变上限积分的等价、以及等价无穷小的关系
当x趋近于0时,内部函数趋于非零极限
由此衍生出内部函数是两个函数相乘的情况,一个存在极限,另一个依旧是未定式
积分上限函数的奇偶性关系
定积分的计算
点火公式的二级用法
反常积分常考题型
定积分与反常积分的关系
无穷区间的反常积分
第一类反常积分的两种比较法
无界函数的反常积分
第二类反常积分的两种比较法
对p积分和q积分的记忆加深
定积分的应用
定积分应用的题型
几何应用——平面图形的面积
二重积分表示平面面积
二重积分表示极坐标
几何应用——旋转体体积
对绕y轴旋转旋转体的体积
二重积分通解绕旋转轴
二重积分求旋转体和单个定积分求旋转体体积的区别
对谁积分问题
对二重积分来说这是y型区域,所以dy后积,dx先积。dx先积分,并且需要用将y函数反解为x函数。
对单个定积分来说,该区域面积是与y轴围成,所以自变量应是y,所以应当对y积分,并且把y函数反解为x函数。
综上得出初步结论:是否反解y函数,取决于是否将与y轴围成区域面积(或者说是否与y有明显边界。)
几何应用——二重积分求面积和旋转体体积的异同
差别:二重积分的公式不同:
相同处:都是由二重积分的性质来决定算法:首先看是什么型区域,x型区域先定x,先定后积。判断x型区域还是y型区域,是看该围成区域的区间界限谁更明显。
在观察后积的部分,看看围成面积的另一个积分的积分区间是多少,如果是求旋转体体积,被积函数要用面积上任意一点到旋转轴距离的公式。