2025大模型学习路线图 (附大模型学习资源分享)

零基础想要入门大模型,langchain、transformer、bert这些是要学的,但是你上来就从这里开始学习,那你就大错特错了!

作为一名有一定编程经验的程序员,我们真的没必要一上来就把时间精力全部投入到复杂的理论、纠结选择什么编程语言和各种晦涩的数学公式上,这样不仅容易让你精神内耗,最终演变成入门到放弃。

所以我们们认识复杂新事物时,最无痛的途径应当是:感性认识现象->理解本质和原理->将所学知识用于解释新现象并指导实践。

所以我给出的这条路径是:先学会如何使用大模型,然后了解其背后的原理,最后探索如何将其应用于实际问题。

Prompt工程:作为一个普通人,把大模型用起来

是我们对大模型提出的问题。举一个最简单的例子,很多同学在第一次使用AI时,都会问AI"你是谁","你是谁"这个问题便是prompt。

图片

一个清晰有效的prompt包含角色、任务目标、上下文、输出要求、限定条件、理想示例等一系列内容,只有把prompt设计好了,大模型才有可能发挥出理想的效果。

AI编程:作为一个程序员,把大模型用起来

图片

学会使用Copilot、通义灵码之类的AI编程工具来提升编码效率。现阶段AI辅助编程在代码补全以及注释生成方面表现还不错,因此需要你来把架子搭好、把模块分好。这样无形中还能提高你的架构能力。

API调用:作为一个大模型套壳程序员,玩一下

掌握如何调用市面上常见的大模型API,结合自己的想法实现具体的小任务,这对初学者来说是一个实际操作的好机会。

图片

这时候你就获得了实践经验和对AI的直观认识。接下来就可以进入更深一层的大模型应用技术了。

大模型应用开发:作为一个大模型应用开发程序员,把大模型用起来

在工具方面,需要学习如LangChain这样的开发库,以及如LlamaIndex这样的数据索引和检索工具。

图片

方向方面:

RAG(Retrieval-Augmented Generation检索增强生成):

RAG,全称检索增强生成(Retrieval-Augmented Generation),就像一个超级智能助手加了个百科全书。想象一下你和一位朋友聊天,他不仅会自己思考回答问题,还能瞬间查阅海量资料来确保答案准确无误。

逻辑流程:数据提取->embedding(向量化)->索引创建->检索->排序->LLM生成。

图片

这部分内容技术细节很多,也非常有趣,很有搞头。

Agent

AI Agent,它被设计为具有独立思考和行动能力的AI程序。你只需要提供一个目标,比如写一个游戏、开发一个网页,他就会根据环境的反应和独白的形式生成一个任务序列开始工作。

 就好像是人工智能可以自我提示反馈,不断发展和适应,以尽可能最好的方式来实现你给出的目标。

典型的AI agent分为Memory(记忆)、Tools(外部工具) 、Planning(计划) 和Action(行动)四个模块。

图片

Agent相关的开源项目以及产品非常多,可以边研究边学边做。

至此,应用方面的板块内容就介绍完了。注意这个路径虽然更适合0基础入门,但是并不代表轻松简单。出来混,总要还的,因为我们前期跳过了很多基础知识,所以意味着越往后学,越需要回填大量前置内容,比如:

  • 掌握 Python 语言

  • 掌握向量数据库

  • 熟悉常用的库和工具,如 NumPy、Pandas、TensorFlow、PyTorch 等

  • 具备 NLP 相关的基础知识,包括文本预处理、分词、词性标注、命名实体识别、词向量表示等

  • Transformer 模型的结构和原理、基于注意力机制的自然语言处理技术等

  • BERT、BART、T5等经典的模型

  • 数学基础知识

说真的,补理论知识、搭项目环境,这个过程自己摸索和踩坑的话还是非常痛苦的。很有可能学着学着就放弃了。

深水区:模型训练和微调

在这一阶段,重点学习各种常见的预训练模型、模型结构及其主要的预训练任务。

大型模型的全面微调(Fine-tuning)涉及调整所有层和参数,以适配特定任务。此过程通常采用较小的学习率和特定任务的数据,可以充分利用预训练模型的通用特征,但可能需要更多计算资源。

参数高效微调(Parameter-Efficient Fine-Tuning,PEFT)旨在通过最小化微调参数数量和计算复杂度,提升预训练模型在新任务上的表现,从而减轻大型预训练模型的训练负担。

即使在计算资源受限的情况下,PEFT技术也能够利用预训练模型的知识快速适应新任务,实现有效的迁移学习。因此,PEFT不仅能提升模型效果,还能显著缩短训练时间和计算成本,使更多研究者能够参与到深度学习的研究中。

PEFT包括LoRA、QLoRA、适配器调整(Adapter Tuning)、前缀调整(Prefix Tuning)、提示调整(Prompt Tuning)、P-Tuning及P-Tuning v2等多种方法。

以下图表示了7种主流微调方法在Transformer网络架构中的作用位置及其简要说明,接下来将详细介绍每一种方法。

图片

产品和交付

大模型时代的产品,无论从用户需求、产品逻辑还是产品形态、商业模式等方面,大家都还处于摸索状态,因此在学习大模型领域知识时一定要一直看到产品和商业化这一层。

看清楚了哪个赛道拥挤、哪个领域是风口,就能够更好地把握职业机会,更有效地将大模型技术转化为求职市场的竞争力。

我们把这个路径捋一下,就得到了这张AI大模型全栈知识地图:

图片

从下往上看,就是我所说的“从实践到理论再到实践”的学习路径了。这样看起来是不是更加轻松愉悦了?

大模型目前在人工智能领域可以说正处于一种“炙手可热”的状态,吸引了很多人的关注和兴趣,也有很多新人小白想要学习入门大模型,却苦于没有大模型入门学习资料?

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

### AI大模型学习路线图及推荐资源 构建一份完整的AI大模型学习路线对于初学者和从业者都至关重要。以下是基于已有研究和实践经验总结的一份系统化学习路径: #### 一、基础知识积累 掌握扎实的基础理论是深入理解AI大模型的前提条件。这包括但不限于以下几个方面: - **线性代数**:矩阵运算、特征分解等内容在深度学习框架中有广泛应用[^1]。 - **概率论与统计学**:贝叶斯定理、分布函数等概念用于建模不确定性场景下的预测行为[^2]。 #### 二、编程技能提升 熟悉至少一种主流编程语言及其生态工具链也是不可或缺的一部分: ```python import numpy as np from sklearn.model_selection import train_test_split X, y = np.arange(10).reshape((5, 2)), range(5) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) print(f'Training set size: {len(y_train)}') ``` 上述代码片段展示了如何利用Python中的`scikit-learn`库完成数据集划分操作,这是机器学习项目前期准备工作中常见环节之一。 #### 三、核心算法原理剖析 针对不同类型的任务需求选取合适的模型架构并优化其性能表现尤为重要: - 自然语言处理领域内的代表性成果有Transformer结构以及由此衍生出来的预训练模型如BERT; - 计算机视觉方向则更多关注卷积神经网络(CNNs)的发展历程和技术革新点等等。 #### 四、实战经验分享 通过参与实际工程项目或者开源社区贡献来巩固所学到的知识是非常有效的途径。可以尝试解决一些公开竞赛平台上的挑战题目,比如Kaggle上关于文本分类、图像识别等方面的问题实例。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值