导读 随着信息技术的发展,现代医学逐渐向数字化和智能化方向迈进。尤其是在中医药领域,通过将传统的中医疗法与先进的计算技术相结合,不仅可以提高诊疗效率,还能增强诊断的准确性和个性化治疗方案的有效性。本报告旨在探讨如何利用大模型与知识图谱构建一个高效的中医临床辅助决策体系,并详细说明其在实际应用中的优势及未来发展方向。
主要内容包括以下几个部分:
1. 政策背景与行业现状
2. 核心技术体系构建
3. 临床应用与成效
01
政策背景与行业现状
1. 政策背景
2024 年 7 月 19 日,国家中医药管理局和国家数据局联合发布了《关于促进数字中医药发展的若干意见》,意见中明确指出用 3-5 年时间推动大数据、人工智能技术与中医药全链条深度融合,重点推进中医药数据共享与流通,构建数字中医药生态体系,支撑中医药现代化与国际化。
2021 年发布的"十四五"规划纲要中也提出了关于智慧医疗的一些重要指示,强调要加快科技创新与数字化产业升级,构建智慧医疗等重点领域生态体系,建设中医药科技支撑平台,加强中医药文化传承与国际传播。
2022 年,国务院办公厅印发《"十四五"中医药发展规划》,提出建设智慧医疗、智慧服务、智慧管理“三位一体”的智慧中医医院,持续推动"互联网+医疗健康"覆盖诊前、诊中、诊后全流程,鼓励研发中医辩证论治智能辅助诊疗系统(CDSS)。
2. 行业现状
中医药行业早已告别往昔仅靠鹤发童颜的老中医通过号脉、观察舌苔来诊疗的传统模式,步入高度信息化的时代。当下,人工智能的深度融入更是为其发展按下“加速键” 。
然而,快速发展的进程中也面临诸多痛点:
-
数据标准化和互操作性:中医的诊疗数据和西医的数据标准有很大不同,数据标准化程度较低,导致在整合和共享数据时存在困难。中医诊疗中的“四诊”(望、闻、问、切)数据难以标准化和数字化,尤其是主观性较强的部分。
-
技术支持不足:中医药的理论体系复杂且独特,需要特定的算法和模型来进行智能诊断和治疗方案推荐。现有的人工智能和大数据技术在中医领域的应用还不够成熟,缺乏针对性的技术解决方案。
-
中医药知识库建设:中医药的理论和实践知识庞大而分散,缺乏系统化的数字化知识库。现有的中医药文献、案例和临床数据的数字化和结构化工作量大,进展缓慢。
-
用户体验和系统易用性:智能诊疗系统的界面设计和操作流程需要符合中医诊疗的习惯和特点,以提升用户体验。系统的易用性和可靠性直接影响医生和患者的使用意愿和效果。
02
核心技术体系构建
为了推动中医药现代化,众多科研团队致力于将现代科学技术,特别是信息技术应用于传统中医领域。这一努力旨在通过系统化、科学化的手段提升中医诊疗的有效性和准确性。
1. 中医学的信息学原理
为了推动中医学与信息学的融合发展,中国中医科学院刘保延教授和文天才教授针对该领域进行了深入地研究,并撰写了一篇题为《从信息科学与物质科学及其范式认识中西医体系的科学原理》的文章,于 2023 年 7 月在《科技导报》上作为封面文章发表,并在同年 11 月被权威杂志《新华文摘》全文转载,本文内容为本报告相关工作提供了理论和方向支撑。
本文深入探讨了中医学与信息学之间的关系,提出了中医学本质上是一门信息科学的观点:医者在中医理论指导下和临床经验的约束下,围绕着帮助患者解除病痛这一目标,利用自己的感官望闻问切,有目的的收集患者的临床表现及其相关信息,将其记录下来,就形成了数据;进一步用原有的信息如中医病因、病机、病位、病势等来理解已收集的数据,形成初步认识,就将来自患者的数据通过分类转变成了信息;再利用自己所掌握的疾病、证候等知识等做出判断,形成诊断结果,就将信息转换为知识,进一步依据诊断结果、结合自己临床经验和所掌握的干预手段提出诊疗方案和处方用药,这就将知识进一步转变为智慧。可见辨证论治的信息转换是在医患交互的过程中,在中医药已经构建的知识体系的基础上,利用人的信息器官在信息技术支撑下所实现的。
-
中医诊疗过程模型化
信息采集:通过“望闻问切”获取患者体征症状信息。
信息处理:医生基于经验与知识进行辨证分析,判断病因、病机、病位、病势。
知识应用:制定治则治法,开具方药并观察疗效反馈。
-
中医科学原理阐释
中医诊疗本质是信息感知、处理与决策的过程,与现代信息科学范式高度契合。
医生作为“人肉计算机”,通过感官采集数据,大脑进行信息加工与知识转化。
中医理论(如《黄帝内经》《伤寒论》)是历代医家经验的知识化总结。
现代技术(知识图谱、大模型)可系统化构建中医知识体系,实现经验传承与创新。
为了提升中医药领域的科技能力,文天才教授带领科研团队正在利用现代信息技术(如大数据、人工智能、知识图谱等),开展了一系列工作,包括中医智慧诊疗、智慧健康管理、智慧科研。
2. 大模型+知识图谱助力中医诊疗
尽管当前的大模型已经能够学习到大量公开的知识,但由于其知识较为宽泛并缺乏专业领域深度知识思考和因果推理能力,无法为诊疗过程提供精确的专业指导。因此,在中医诊疗过程中,除了使用大模型外,还需引入诸如知识图谱等规则化知识来增强模型诊断的精准度和可靠性。
以模拟医生问诊过程为例,当患者描述症状(如腰酸腿痛)时,大模型可能会初步推测可能是肾虚引起的问题,并进一步询问相关症状(如夜间盗汗、尿频尿急)。然而,这样的推理过程可能存在不确定性或“幻觉”。通过结合知识图谱,可以为大模型提供结构化的知识支持,使其在推理过程中更加精确。最终,大模型可以结合知识图谱实现患者的证候诊断,并据此提出更为准确的治疗建议。
中医的知识体系可以采用知识树或知识图谱来表达(模式层)。例如,一个疾病可以包含多个证候,因为疾病是对一种“病”全生命周期的概括,而证候是“病”在某一阶段的特征总结;证候又可表现为多种症状,一个证候可以对应一个治法治则等等。当面对具体患者时,则可以将模式层转换为数据层。例如,糖尿病肾病的一种证型为脾肾阳虚,而脾肾阳虚则可以表现为水肿、腰膝酸软、面色苍白和乏力等。这种结构化的知识表示方式非常适合用知识图谱的形式来组织和存储,以便于后续与大模型结果进行推理。
此外,还可以构建更深层次的认知图谱,通过为节点和边添加权重来反映不同信息的重要性,从而提高推理精度。
通过上述工作,文天才教授带领团队构建了中医药诊疗知识库。该知识库不仅涵盖了具体疾病的治疗方案,还包括典籍术语、名医名家的诊疗经验等多层次的知识。鉴于医学领域的严谨性,团队将所有知识按照证据级别分为三级:一级知识包括指南、教材、专家共识等;二级知识则涉及名医的临床经验和专业书籍;三级知识则涵盖古籍文献等。这种分级有助于确保诊疗建议的科学性和有效性。结合大模型相关技术与中医专属知识库,为中医诊疗智能化应用提供支撑 。
03
临床应用与成效
1. 平台核心功能
最终,在大模型和知识图谱的支撑下,团队构建了包括智慧问诊、智慧辩证和辅助开方三大功能的中医临床辅助决策平台。智慧问诊借助智能语义技术和逻辑化疾病知识集,感知病历文字,推荐相关症状,减少问诊遗漏;智慧辩证基于逻辑化疾病知识集,通过智能算法结合多方面信息,推荐诊断结果,降低漏诊误诊;辅助开方依据中西医结合诊疗知识集,关联患者多项信息,为不同科室智能推荐最佳中医诊疗处方。
2. 应用场景示例
在实际应用中,可将上述知识图谱和大模型的能力以 API 方式嵌入到医院现有的 HIS 系统中,使得医生能够在日常工作中便捷地使用这些工具。例如,当医生输入患者的症状后,系统能自动推荐相关的症状和可能的疾病类型和分析并推荐最有可能的诊断结果,并给出个性化的治疗方案。这不仅可以提高诊疗效率,还可以通过知识共享提升基层医疗服务的质量。
现在,团队还接入了最新的 DeepSeek 大模型,同时结合知识图谱和医学推理私有模型,充分发挥私有小模型的精确性的优势和大模型处理模糊信息的优势,使临床服务能力进一步提升。
目前,该平台不仅支持结构化数据的处理,还可以解析图像数据。这使得系统可以更全面地分析患者的病情,提供更为精准的诊断建议。
此外,为了保证大模型生成处方的合规和安全,团队还建立了包含 7 万余种西药、4万余种中成药和 8 千余种中药的数据库,并在此基础上构建了涵盖 17 大类 300 余万条规则的方剂审查规则库,该规则库不仅包括中药之间的“十八反十九畏”等规则,还包括了西药联用、中西医药联用审查规则。同时,考虑到儿童、老年人、运动员等特殊人群的需求,规则库中特别加入了针对这些群体的安全用药指导,从而为模型推荐处方进行最后把关。
3. 科研成果
作为一支国家级科研团队,文天才教授团队在既往科研工作中形成了大量软件、专利、奖励、论文、著作等成果。
未来,团队也将秉持开放合作的态度,为中医药行业的数字化、智能化转型注入持久动力,开拓更为广阔的发展天地 。
以上就是本次分享的内容,谢谢大家。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】