前言
|人物介绍
李飞飞,女,1976年出生于中国北京,美国国家工程院院士、美国国家医学院院士、美国艺术与科学院院士,美国斯坦福大学首位红杉讲席教授,以人为本人工智能研究院(HAI)院长,AI4ALL联合创始人及主席,Twitter公司董事会独立董事,加拿大风险投资机构Radical Ventures科学合伙人。
李飞飞的工作包括括受认知启发的AI,机器学习,深度学习,计算机视觉和AI+医疗保健,尤其是用于医疗保健交付的环境智能系统。她还从事认知和计算神经科学方面的工作。她发明了ImageNet和ImageNet Challenge,其中ImageNet Challenge是一项重要的大规模数据集和基准测试工作。
|学术论著
根据2021年4月斯坦福大学网址显示,李飞飞在包括《自然》《美国国家科学院院刊》《神经科学期刊(Journal of Neuroscience)》《计算机视觉与模式识别会议(CVPR)》《国际计算机视觉大会(ICCV)》《神经信息处理系统大会(NIPS)》《欧洲计算机视觉大会(ECCV)》《国际计算机视觉期刊(IJCV)》《IEEE模式分析与机器智能汇刊(IEEE-PAMI)》 等各类期刊和会议中发表了200多篇科学论文
|空间智能
2024年12月2日,由华裔科学家、被称为“AI教母”的斯坦福大学教授李飞飞创办的AI创业公司World Labs宣布向“空间智能”迈出第一步:从单张图像即可生成三维世界。
全文概要
李飞飞讨论了她对AI开发的旅程和见解,强调了从创建Imagenet到发展WorldLabs的转变。
她强调了与机器学习模型过度拟合的斗争,并认识到大型数据集和多样化表征对于AI的发展至关重要。 她在普林斯顿的早期职业生涯和对WordNet的接触塑造了她对数据集重要性的看法。
李飞飞的目标是解锁空间智能,展望人工智能在导航和理解物理和数字3D世界方面的未来,这可能从根本上改变人类与技术的互动。
她讨论了负责任的治理、以人为中心的AI以及AI改善全球福祉的潜力,强调了教育、政策和多元参与在塑造积极的AI未来中的作用。
李飞飞的个人灵感激发了人们对乐观和行动的呼吁,以使AI技术公平地造福社会。

进入正题
|Imagenet的起源: 桥接数据和模型复杂性
Imagenet的诞生受到了2006年左右机器学习模型过拟合挑战的推动。 专注于使用机器学习算法理解图像的研究,创建者遇到了一个普遍忽视数据质量和复杂性的问题,被对模型的强调所掩盖。 认识到神经网络模型的卓越能力和表示能力,人们意识到数据和模型复杂性之间的有效相互作用至关重要。 这一见解导致了利用数据增强模型性能的愿景,标志着Imagenet概念的开始。
|从WordNet到世界实验室: 在人工智能中桥接语言和空间智能
从WordNet到世界实验室的旅程突出了一个专注于将语言通信和空间智能整合到人工智能系统中的转变。 最初被WordNet的概念组织吸引,演讲者的职业生涯演变为开发图像网,强调大数据和多样化视觉表现的必要性。 现在,随着世界实验室的发展,重点是通过不仅强调语言交流,而且强调空间智能的关键方面,理解和复制机器中的人类智能。 这涉及使机器能够感知、理解三维世界并与之互动,反映了像人类这样的智能生物的基本能力。
|空间智能的演变及其对现实和数字世界的影响
空间智能,理解3D世界的下一个前沿,无论是物理的还是数字世界,正准备像近年来的数字进步一样,彻底改变我们与环境的互动。 通过将现实与数字融合,它承诺打破界限,通过增强指导,使从日常琐事到复杂手术的任务更容易访问。 这种从标记2D图像到理解3D空间的转变标志着现实与数字体验之间的界限模糊的世界的重大飞跃,为学习、解决问题和与周围环境互动提供了新的可能性。
|以人为中心的人工智能: 在数字时代培养同理心和能动性
这些强调了发展尊重人类能动性和个人价值的人工智能技术的重要性,强调了人工智能作为人类进步的工具而不是替代品的作用。 它倡导以人为本的AI开发方法,注重同情心、赋权和提高人类能力。 这种方法旨在确保技术进步,尤其是人工电子技术的进步,有助于提升人类的潜力,应对社会挑战,同时维护人类的尊严和能动性。
|AI革命的拐点: 日常应用和未来的挑战
当前的AI创新时刻标志着一个重要的转折点,应用程序现在可供日常人和企业使用。 早期AI先驱的梦想正在成为现实,图灵测试和自动驾驶等挑战几乎被克服。 尽管取得了进步,但人们已经意识到 “硅谷泡沫”,并且需要全球对人工智慧的潜力和挑战进行理解。
|通过科学和治理确保AI的积极方向
讨论强调了通过将政策和治理建立在科学事实和方法的基础而不是科幻小说的基础上,引导AI开发走向积极成果的重要性。 它倡导一种平衡的方法,专注于在人类影响直接的人工智能实际应用中应用护栏,而不会阻止人工智能技术的进步。 演讲者强调了合作努力的紧迫性,包括政府和跨行业参与,以确保AI的有益轨迹,强调必须将AI治理基于经验数据和科学原则,以避免投机极端。
|AI治理和积极生态系统的重要性
讨论强调了通过将政策和治理建立在科学事实和方法的基础而不是科幻小说的基础上,引导AI开发走向积极成果的重要性。 它倡导一种平衡的方法,专注于在人类影响直接的人工智能实际应用中应用护栏,而不会阻止人工智能技术的进步。 演讲者强调了合作努力的紧迫性,包括政府和跨行业参与,以确保AI的有益轨迹,强调必须将AI治理基于经验数据和科学原则,以避免投机极端。
|使AI民主化: 通过教育赋予多元化青年权力
该倡议旨在通过暑期课程、实习和与大学的合作,扩大来自不同背景的K12学生的AI教育。 通过专注于代表性不足的群体,包括女性和那些来自农村或城市中心地区的群体,该项目希望激发一个多元化的人工智能开发者和创新者社区。 参与者参与了有影响力的项目,例如优化救护车调度算法和评估农村社区的水质,强调包容性人工智能教育推动社会效益的潜力。
|AI对医疗服务的影响以及AGI的概念
人工智能在医疗保健领域的变革潜力是巨大的,人类可以通过环境智能技术改善医疗保健服务。 对话还探讨了AGI模糊概念及其对社会和工作部门的影响。
|乐观主义和AI: 对灵感和愿望的反思
一部充满对未来乐观态度的电影,其中 “我的邻居totoro” 以其简单和深刻而突出。 对话转向希望了解更多关于使用AI帮助人们的问题,强调该领域专家所做的创新工作以及激发进一步贡献的必要性。
人工智能科幻电影《机械姬》剧照
|AI与能源创新的交汇点
李飞飞从人类在能源方面的进步中获得灵感,强调了其对AI开发和全球人口能源获取的重要性。 他们强调从化石燃料的关键转变以及能源创新朝着可持续性和民主化的积极势头。
|利用技术促进全球繁荣和共享利益
技术拥有在未来15年显著提高全球知识、福祉和生产力的潜力。 在此我们知道使技术进步的好处民主化的重要性,以确保共同的繁荣,倡导朝着这一目标迈出的第一步是集体认识到广泛分享这些好处的必要性。
疑问与回答
|是什么引发了创建镜像网的想法?
图像网的想法是在2006年左右使用机器学习算法理解物体和图像的研究中引发的。 中心问题是由于模型复杂性和数据不匹配而导致的机器学习模型过拟合概念,特别是在数据量、复杂性和价值方面。
|Wordnet的概念与图像网的发展有什么关系?
Wordnet的概念组织了世界上的概念,激发了图像网的发展。 对大数据的需求和视觉世界的多样化表现推动了Imagenet的创建,正如Faye在普林斯顿时所设想的那样。
|创建世界实验室背后的核心思想是什么?
创建世界实验室背后的核心理念是推进对机器智能的理解,特别是通过观察语言交流和感知三维世界的能力,这被称为空间智能。
|空间智能与人类和动物智能有何关系?
空间智能被认为是一种基本的本地能力,体现了像人类一样聪明的动物,即处理三维空间的能力。 这是人类和动物智力的一个重要方面,超越了语言交流。
|在空间智能的背景下,理解和标记三维图像的意义是什么?
理解和标记三维图像是人类、动物和机器理解我们生活的视觉世界的关键的第一步。 这是理解更完整的三维世界的第一步,对于空间智能的发展至关重要。
|空间智能如何连接物理和数字三维世界?
空间智能具有通过感知物理和数字三维世界来统一技术的潜力。 它旨在成为一种允许与像素世界进行交互的技术,无论是虚拟的还是物理的,并且预计将在未来的进步中发挥重要作用。
|大型语言模型和世界模型在功能上有何不同?
大型语言模型和世界模型的根本区别在于,语言模型是关于在2D中表达概念,而世界模型是关于在3D空间中感知和行动。 语言模型中的基本单位是字母或单词,而在世界模型中,它们是像素或体素。
|从李飞飞的信念角度来看,技术、人工智能和人际互动的愿景是什么?
她表达的愿景是人类能够创造先进技术来改善社会机构,并将旧石器时代根源的情感提升为创造力,生产力和仁慈。
|李飞飞认为AI开发的两个关键方面是什么?
李飞飞从人类在能源方面的进步中获得灵感,强调了其对AI开发和全球人口能源获取的重要性。 他们强调从化石燃料的关键转变以及能源创新朝着可持续性和民主化的积极势头。
|李飞飞认为技术和创新的唯一目的是什么?
李飞飞认为技术和创新的唯一目的是造福人类,并且是仁慈的。
人工智能科幻电影《AI:人工智能》剧照
|如何将AI引向积极的方向并确保其有益使用?
李飞飞建议将人工智能政策和治理基础建立在科学数据和方法论上,并专注于实施对人类受影响的人工智能应用的监管框架,类似于为早期汽车制定安全措施的方式。
|讨论中饭提到的两种公开商品形式是什么?
1.好奇心驱动的创新和新知识
2.对越来越多的青年和公众进行技术教育。
|非营利组织Ifo的使命是什么?它如何为所有人的AI做出贡献?
非营利组织Ifo的使命是为来自不同背景的K12学生提供通过暑期课程、大学和实习进入AI的机会。 它通过教育接触公共利益,并让更多来自不同背景的人学习和开发AI,为所有人的AI做出贡献。
|对AGI这个术语及其含义的看法是什么?
这个术语出现在大约10年前,强调希望人工智能拥有更多的通用能力,而不是局限于特定的任务。 李飞飞认为,人工智能的最初梦想,正如创始人约翰麦卡锡和马文明斯基所共有的,是创造能够执行智能任务的思维机器,这与AGI的概念相一致。
|什么是分享知识和学习的有力工具?
李飞飞将自然语言分享知识的方式 (例如通过语言模型或搜索工具) 视为一种强大的工具,使人们能够搜索、学习和提问以提高理解和学习能力。
|为什么强调人类代理和互动的重要性?
李飞飞强调人类代理和互动的重要性,因为他们相信赋予人们良好的工具和培养协作能力,使人类能够更精确地使用人工智能。 他们还希望抵消那些暗示人工AI旨在取代人类的叙事,并强调人类互动在教学、社区和同理心中的关键重要性。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓