一文全面汇总大模型技术生态!

一、大模型简介与核心原理

大语言模型(Large Language Model, LLM)是人工智能领域的核心技术,基于Transformer架构,通过海量数据预训练和微调,实现对自然语言的深度理解与生成能力。其核心原理包含以下关键要素:

  1. 预训练与微调:模型先在通用语料库(如网页、书籍、代码)上通过自监督学习捕捉语言规律,再通过特定任务数据(如问答、对话)进行微调,适配具体场景。

  2. 注意力机制:Transformer的自注意力机制(Self-Attention)允许模型并行处理序列数据,解决了传统RNN的长距离依赖问题,显著提升训练效率。

  3. 参数规模:模型参数量从十亿级(如LLaMA-7B)到万亿级(如GPT-4),参数量的增长显著提升了模型的跨任务处理能力和推理精度。


二、主流大模型清单

当前大模型可分为闭源与开源两类,各具特色:

  • 闭源模型

    • GPT-4(OpenAI):支持多模态输入,推理能力卓越,广泛应用于复杂问答和代码生成。

    • Claude-3(Anthropic):上下文窗口扩展至1M token,专注于减少幻觉并增强无害性。

    • 日日新SenseNova(商汤科技):超千亿参数的多模态模型,支持中英文及文本、图像、视频处理,开源生态强大。

  • 开源模型

    • LLaMA系列(Meta):参数7B-70B,性能媲美GPT-3.5,成为开源社区基础模型首选。

    • ChatGLM-6B(清华):中英双语支持,量化后可在消费级显卡部署。

    • deepseek:性能高效,成本更低效果更好。


三、大模型技术生态分层解析
1. 基础模型层:

基础模型层是生态的底层支撑,分为闭源、开源与垂直领域模型:

  • 闭源模型:以GPT-4、Claude-3为代表,通过API提供商业化服务,支持插件扩展(如ChatGPT插件生态),适用于高可靠性场景。

  • 开源模型:如LLaMA、Mistral-7B,允许开发者自由微调和优化,推动社区创新。例如,阶跃星辰开源的Step-Video-T2V支持生成540P视频,参数达300亿。

  • 垂直模型:医疗领域的Med-PaLM、金融领域的BloombergGPT,通过领域数据微调提升专业性。

2. 模型运行层:高效推理的引擎

运行层解决模型部署的效率与资源问题,工具选型需根据场景需求:

  • 高性能推理框架

    • vLLM:采用PagedAttention技术,A100 GPU上吞吐量达2450 tokens/s,显存占用降低40%,适合高并发API服务。

    • LMDeploy:通过Turbomind引擎实现50ms级延迟,支持W4A16量化,模型体积压缩4倍,适用于实时风控系统。

    • TGI(Text Generation Inference):支持多GPU扩展与自动故障转移,符合GDPR标准,被AWS SageMaker采用。

  • 轻量化框架

    • Ollama:一键本地部署,集成Web界面,6GB显存即可运行7B模型,适合个人快速验证。

    • Llama.cpp:纯CPU推理,树莓派4B即可运行,适用于边缘设备隐私计算。

3. 模型优化层:性能提升的关键

优化层通过技术创新提升模型效率与适配性:

  • 微调技术

    • LLaMA-Factory:支持参数高效微调(PEFT),仅调整0.1%参数即可适配垂直场景。

    • Unsloth:优化LoRA微调流程,训练速度提升30%,显存消耗减少50%。

  • 量化压缩:ChatGLM-6B通过INT4量化将显存需求降至6GB,实现低门槛部署。

  • 框架优化:Hugging Face Transformers库支持动态批处理与混合精度训练,提升训练效率3倍。

4. 开发框架层:应用构建的脚手架

开发框架降低技术门槛,加速应用落地:

  • LangChain:支持多模型编排与外部工具集成,可构建RAG增强的问答系统,提升知识库准确性。

  • LlamaIndex:优化检索增强生成(RAG),支持多源数据索引,适用于企业级知识管理。

  • Spring AI:提供标准化API接口,集成企业级安全与监控,简化金融、医疗行业应用开发。

5. 中间件层:功能增强的粘合剂

中间件连接模型与应用,实现复杂功能组合:

  • AI Agent技术

    • AutoGen:支持多智能体协作,可自动分解任务并调用工具(如代码解释器),适合自动化工作流。

    • CrewAI:任务编排框架,支持动态资源分配,被用于智能制造中的质检流程优化。

  • 向量数据库

    • Chroma:轻量级开源方案,支持实时语义搜索,延迟低于10ms。

    • Pinecone:企业级服务,提供混合检索(关键词+向量),适用于电商推荐系统。

6. 应用层:智能落地的终端

应用层直接面向用户,覆盖通用与垂直场景:

  • 通用工具

    • 智能客服:基于GPT-4的对话系统,处理准确率达95%,减少人工干预。

    • 内容创作:如DALL·E 3图像生成、阶跃星辰的Step-Video视频生成,提升创意效率。

  • 垂直解决方案

    • 医疗:Med-PaLM 2实现病历自动分析,诊断建议通过率超90%。

    • 金融:财跃星辰的“AI小财神”提供投资策略分析,支持多源数据推理路径可视化。

    • 工业:Llama.cpp + KTransformers部署边缘质检终端,实时识别产品缺陷。


 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

### RAG模型概述 RAG(Retrieval-Augmented Generation)是一种融合了检索增强机制的生成型语言模型,由Facebook AI研究院(FAIR)提出。这种架构通过结合传统的基于检索的方法和现代的语言生成技术来提升自然语言处理任务的效果[^3]。 ### 工作原理详解 #### 数据获取阶段 在数据准备过程中,RAG利用外部知识库作为补充资源。当接收到输入查询时,系统首先会在预先构建的知识图谱或其他形式的大规模语料库中执行信息检索操作,找到最有可能帮助完成当前对话或任务的相关片段。 #### 动态上下文集成 不同于静态预训练模式下的纯生成方式,在线检索到的具体实例会被即时融入到解码器端口处,使得每次预测都能依据最新获得的真实世界证据来进行调整优化。这一特性赋予了RAG更强的情境适应能力,尤其是在面对开放领域问答、多轮次交互式聊天等复杂场景下表现尤为突出。 #### 双重评分机制 为了确保最终输出的质量,RAG采用了两步走策略:先是从候选集中挑选出若干高质量的回答选项;再经过一轮精细评估后决定最佳回复方案。具体来说就是分别计算每条建议得分——一方面考量它与原始请求之间的匹配度;另一方面也要顾及内部连贯性和逻辑一致性等因素。 ```python def rag_model_inference(query, knowledge_base): retrieved_docs = retrieve_relevant_documents(query, knowledge_base) generated_responses = [] for doc in retrieved_docs: response = generate_response_based_on_document(doc) generated_responses.append(response) best_response = select_best_response(generated_responses) return best_response ``` ### 应用案例分析 实际应用方面,《大模型RAG实战:RAG原理、应用与系统构建》一书中提供了丰富的实践指导和技术细节解析,涵盖了从理论基础到工程实现再到部署上线全流程的内容介绍。对于希望深入了解并掌握这项前沿技术的研究人员而言,这本书籍无疑是一个宝贵的学习资料来源[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值