当RAG拥有“大脑”:揭秘Agentic RAG的进化之路

前2天我们介绍了有关RAG分块策略,通过优化文本切割方式(如按段落、语义或滑动窗口),让AI更精准地定位资料。但传统RAG仍有硬伤:被动检索、机械拼接答案、缺乏深度推理。

那接下来我们就介绍下Agentic RAG,在技术上对传统RAG进行突破。

01

RAG限制

检索增强生成 (RAG) 是一种用于构建 LLM 驱动的应用程序的技术。它利用外部知识源为 LLM 提供相关上下文并减少幻觉。

Naive RAG 由检索组件(通常由嵌入模型和向量数据库组成)和生成组件(LLM)组成。在推理时,用户查询用于对索引文档运行相似性搜索,以检索与查询最相似的文档,并为 LLM 提供额外的上下文。

Vanilla_RAG-697535e2d5b9ae64ccfd6415a79965c7.png

典型的 RAG 应用程序有两个相当大的限制:

Naive RAG 只考虑一个外部知识源。但是,某些解决方案可能需要两个外部知识源,而某些解决方案可能需要外部工具和 API,例如 Web 搜索。

它们是一次性解决方案,这意味着上下文被检索一次。对检索到的上下文的质量没有推理或验证。

02

什么是AI系统中的代理

随着 LLM 的普及,出现了 AI 代理和多代理系统的新范式。AI 代理是具有角色和任务的 LLM,可以访问内存和外部工具。LLM 的推理功能可帮助代理规划所需的步骤并采取行动完成手头的任务。

因此,AI 代理的核心组件是:

  • LLM(具有角色和任务)

  • 记忆力(短期和长期)

  • 规划(例如,反思、自我批评、查询路由等)

  • 工具(例如,计算器、Web 搜索等)

Components_of_an_AI_agent-2f1846374720471d6b11169203ccb865.png

03

什么是Agentic RAG

Agentic RAG 描述了一种基于 AI 代理的 RAG 实现。具体来说,它将 AI 代理整合到 RAG 中,以编排其组件并执行除简单信息检索和生成之外的其他作,以克服非代理的限制。

3.1 AgenticRAG如何运作?

Agentic RAG 的工作原理是将一种或多种类型的 AI 代理整合到 RAG 系统中。例如,代理 RAG 系统可能会组合多个信息检索代理,每个代理都专门用于特定域或类型的数据源。一个代理查询外部数据库,而另一个代理可以梳理电子邮件和 Web 结果。

具体来说,检索组件通过使用可访问不同检索器工具的检索代理而成为代理组件,例如:

  • 对向量索引执行向量搜索的向量搜索引擎(也称为查询引擎)

  • Web 搜索

  • 计算器

  • 用于以编程方式访问软件的任何 API,例如电子邮件或聊天程序

  • ....

然后,RAG 代理可以对以下示例检索场景进行推理和作:

  • 决定是否检索信息

  • 确定使用哪个工具检索相关信息

  • 构建查询本身

  • 评估检索到的上下文,并确定是否需要重新检索。

04

Agentic RAG架构

与顺序的 RAG 架构相比,代理 RAG 架构的核心是代理。代理 RAG 架构可能具有不同程度的复杂程度。在最简单的形式中,单代理 RAG 架构是一个简单的路由器。但是,您也可以将多个代理添加到多代理 RAG 架构中。本节讨论两种基本的 RAG 架构。

4.1单代理RAG(路由器)

代理 RAG 最简单的形式是路由器。这意味着您至少有两个外部知识源,代理决定从哪个源中检索其他上下文。但是,外部知识源不必局限于(矢量)数据库。您也可以从工具中检索更多信息。例如,您可以执行 Web 搜索,也可以使用 API 从 Slack 通道或您的电子邮件帐户中检索其他信息。

Single_Agent_RAG_System_(Router)-ae2ec18616941504070d6b2a7210a358.png

4.2 多代理RAG

正如您可以猜到的那样,单代理系统也有其局限性,因为它仅限于一个代理,集推理、检索和答案生成于一体。因此,将多个代理链接到一个多代理 RAG 应用程序中是有益的。

例如,您可以有一个主代理,负责在多个专用检索代理之间协调信息检索。例如,一个代理可以从专有的内部数据源检索信息。另一个代理可能专门从您的个人帐户中检索信息,例如电子邮件或聊天。另一个代理也可能专门从 Web 搜索中检索公共信息。

Multi_Agent_RAG_System-73e480f62a52e172a78a0ac344dcdcb5.png

05

Agentic RAG 与 RAG 对比

虽然 RAG 的基本概念(发送查询、检索信息和生成响应)保持不变,但工具使用将其泛化,使其更加灵活和强大。

可以这样想:RAG 就像在图书馆回答特定问题。另一方面,Agentic RAG 就像手里有一部智能手机,里面有网络浏览器、计算器、电子邮件等。

功能RAG增强RAG
访问外部工具noyes
查询预处理noyes
多步检索noyes
验证检索到的信息noyes

06

Agentic RAG 框架

LangChain、CrewAI、LlamaIndex 和 Letta 等代理框架已经出现,以促进使用语言模型构建应用程序。这些框架通过将预构建的模板插入在一起,简化了代理 RAG 系统的构建。

  • LangChain 提供了许多使用工具的服务。LangChain 的 LCEL 和 LangGraph 框架进一步提供了内置工具。

  • LlamaIndex 进一步介绍了 QueryEngineTool,这是检索工具的模板集合。

  • CrewAI 是开发多代理系统的领先框架之一。用于工具使用的关键概念之一是在代理之间共享工具。

07

Agentic RAG 优劣势

优势:

从原版 RAG 到代理 RAG 的转变使这些系统能够产生更准确的响应,自主执行任务,并更好地与人类协作。

代理 RAG 的好处主要在于提高检索到的附加信息的质量。通过添加有权访问工具使用的代理,检索代理可以将查询路由到专业知识源。此外,代理的推理功能可以在将检索到的上下文用于进一步处理之前对其进行一层验证。因此,代理 RAG 可以带来更强大、更准确的响应。

优势:

然而,每枚硬币总是有两面的。使用 AI 代理子任务意味着合并 LLM 来执行任务。这带来了在任何应用程序中使用 LLM 的限制,例如增加延迟和不可靠性。

根据 LLM 的推理能力,代理可能无法充分完成任务(甚至根本无法完成)。重要的是要采用适当的故障模式,以帮助 AI 代理在无法完成任务时摆脱卡顿。

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

Agentic RAG 是一种先进的信息检索和生成框架,它结合了代理(Agent)、检索增强生成(Retrieval-Augmented Generation, RAG)以及大型语言模型(LLM)的能力。这种架构旨在更有效地处理复杂的查询请求,并提供更加准确的答案。 核心特点包括: - 动态编排机制:利用AI代理的灵活性来适应不同类型的用户需求,调整检索与生成策略以解决复杂的问题。 - 查询优化:当初始检索结果不理想时,系统会尝试改进查询条件或者采用其他手段提高结果质量。 - 工具调用:可以集成外部工具和服务,例如特定领域的API或数据库访问权限,从而扩展系统的功能范围。 - 多步推理能力:支持需要连续逻辑步骤才能完成的任务解答过程。 - 应用于各个领域:可以根据具体的应用场景创建专业的文档代理(Doc Agent),如财务、法律等领域,帮助收集相关信息并形成综合性的报告文本。 为了使 Agentic RAG 更加实用,在实际应用中通常还会涉及到以下几个方面的工作: 1. 定义明确的目标群体及其常见问题类型; 2. 设计合理的数据源接入方案确保获取高质量的信息资源; 3. 开发高效的算法实现快速而精确的结果匹配; 4. 测试和完善整个流程保证稳定可靠的用户体验。 通过这种方式,Agentic RAG 能够显著提升自动化问答服务的质量,特别是在面对那些涉及广泛背景知识和技术细节的情况下表现尤为突出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值