大语言模型原理与工程实践:大语言模型推理工程提高并行度:张量并行
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
随着大规模语言模型(Large Language Models, LLMs)的涌现,如GPT系列、通义千问等,对这些模型的高效利用和部署成为了一个关键挑战。特别是对于基于Transformer架构的语言模型,它们具有庞大的参数量和计算需求,这使得在实际应用中需要高带宽、高性能的计算资源以及有效的并行化策略。
1.2 研究现状
现有的大语言模型通常采用数据并行(Data Parallelism)的方式来加速训练,即复制模型的不同部分到不同的GPU上,并在不同的GPU上并行处理数据集的不同部分。然而,推理阶段的并行化策略相对较少探索,特别是在考虑模型的复杂结构和超大规模参数时。在这篇文章中,我们将探讨一种名为“张量并行”(Tensor Parallelism)的技术,它旨在提高大语言模型推理过程中的并行度和效率。
1.3 研究意义
张量并行策略不仅可