大语言模型原理与工程实践:大语言模型推理工程提高并行度:张量并行

大语言模型原理与工程实践:大语言模型推理工程提高并行度:张量并行

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

1.1 问题的由来

随着大规模语言模型(Large Language Models, LLMs)的涌现,如GPT系列、通义千问等,对这些模型的高效利用和部署成为了一个关键挑战。特别是对于基于Transformer架构的语言模型,它们具有庞大的参数量和计算需求,这使得在实际应用中需要高带宽、高性能的计算资源以及有效的并行化策略。

1.2 研究现状

现有的大语言模型通常采用数据并行(Data Parallelism)的方式来加速训练,即复制模型的不同部分到不同的GPU上,并在不同的GPU上并行处理数据集的不同部分。然而,推理阶段的并行化策略相对较少探索,特别是在考虑模型的复杂结构和超大规模参数时。在这篇文章中,我们将探讨一种名为“张量并行”(Tensor Parallelism)的技术,它旨在提高大语言模型推理过程中的并行度和效率。

1.3 研究意义

张量并行策略不仅可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值