2025大模型落地技术路线图,看完这篇就够了!

这次展开讲讲。

怎么把“近乎万能”的大模型应用到自己的业务里?

(1)业务场景怎么落地大模型?

假设现有业务流程Program如下:

  • 任务从开始到结束先后经历3个步骤,其中包含逻辑判断环节。

  • 示例:智能客服场景里,用户进线后,先后经历 猜你想问→自助工具→知识问答→多轮会话→人工客服→工单系统等几个环节

按照大模型渗透程度深浅,大模型应用开发模式可划分成几类。

  • •① 嵌入式Embedded:单个流程接入大模型,如 只在知识问答环节引入大模型,提升问答能力,其它环节照旧。

  • •②辅助式Copilot:智能化程度提升,大部分流程都由大模型完成初稿,人工确认效果。如用户进线客服系统后,问题推荐、自助、问答等主要流程都由LLM处理,关键环节由人工核实,保证服务质量。

  • •③代理式Agent:明确任务目标后,托管给Agent,最后人工验收。这个阶段智能化程度进一步提升,进入“托管”阶段,人工可以省略。

  • •④群体式Society:有些场景涉及多方协作,此时可以用多个Agent跟人一起协作,共同完成任务,如清华发布论文,研究多个Agent玩狼人杀游戏。

模式总结如下:

  • 嵌入→辅助→单智能体→多智能体,可控性逐步下降,智能化比例逐步提升,直至全托管。

  • 大模型“渗透率“越高,系统越智能,人工成本越低,但不足之处是可控性越差,对LLM依赖越重。

(2)具体用什么技术?

大模型落地时,常见技术点:PE、Fine-tune、RAG、Agent等,共同完成应用需求。

这些技术有什么区别?

  • ①PE提示工程:基座模型不动,纯粹通过优化提示语来完成指定任务;简单快速,但PE工作量大,且受限于基座模型能力(知识+理解)

  • ②RAG检索增强生成:依然不动基座模型,通过检索外部知识来缓解基座模型知识储备不足的问题;实施方便,知识扩展便捷,但解决不了复合推理问题。

  • ③PEFT参数高效微调:开始更改/新增少量参数,快速提升基座模型在特定任务上表现,微调成本低,见效快,但容易过拟合、灾难遗忘。

  • ④ME模型编辑:针对特定知识点进行修复训练,效率高于PEFT,且更为彻底。

  • ⑤FT全参微调:更新全部参数,适合垂类增量预训练,让基座模型学到更多领域知识。

  • ⑥Agent智能体:不动基座模型,通过追加组件(人设、记忆、规划等)将模型“拟人化“,进而完成更复杂的任务。

一张图概括如上,这几种技术方案对数据、计算资源、提示工程、检索等要求不同,应用时根据各自情形选择合适的方法。

  • 垂类业务:如果数据量少,PE或PEFT,数据多且GPU充足,FT(或CPT增量预训练)

  • 通用业务:以PE、Agent为主

  • 强调可控?PE升级为workflow、ReACT、Multi-agent这类复杂设计。

通用路线图(放之四海而皆准):

  • 先从PE开始,不断升级,充分挖掘基座模型能力天花板

  • 模型知识量不足?RAG系列改进方案

  • 垂类知识库多?微调或增量训练

  • RAG+FT两者可以混合使用

  • 任务复杂/涉及协作?Agent方案

各个板块适用条件不同

  • ① PE

  • 特点:指令清晰+任务拆解+思维力+系统测试

  • 扩展:提供参考信息+使用工具

  • 不适合:引入新信息+复杂风格稳定复制+token节省

  • ② RAG

  • 作用:引入新信息+减少幻觉

  • 不适合:开放域知识(医疗/法律)+学习特定风格结构

  • ③ FT

  • 特点:指令遵循,以特定风格结构回复

  • 适合:加强基础模型中已有知识+修改定制输出格式+节省token

  • 不适合:添加新知识+快速迭代

  • ④ Agent

  • 特点:解决复合问题,具备一定思考能力

  • 适合:复杂任务, 离散/孤立→连续/环境

  • 不适合:简单/性能要求高

附录

详见博客专题:https://wqw547243068.github.io/llm_solution

更多专题资料见博客可视化导航

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

大模型就业发展前景

根据脉脉发布的《2024年度人才迁徙报告》显示,AI相关岗位的需求在2024年就已经十分强劲,TOP20热招岗位中,有5个与AI相关。
在这里插入图片描述字节、阿里等多个头部公司AI人才紧缺,包括算法工程师、人工智能工程师、推荐算法、大模型算法以及自然语言处理等。
在这里插入图片描述
除了上述技术岗外,AI也催生除了一系列高薪非技术类岗位,如AI产品经理、产品主管等,平均月薪也达到了5-6万左右。
AI正在改变各行各业,行动力强的人,早已吃到了第一波红利。

最后

大模型很多技术干货,都可以共享给你们,如果你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值