别再盯着DeepSeek了,阿里的Qwen2.5 VL可能更适合打工人

阿里发布的Qwen2.5-VL大模型展现了多项技术突破和应用创新,我先用术语列出其核心亮点和值得关注的技术细节。看不懂技术的没关系,直接拉到下面看打工人如何嗨皮的用其挣钱吧!

一、核心技术创新

    1. 动态分辨率与帧率训练
  • 在视频理解中引入动态FPS采样技术,使模型能适应不同采样率的视频输入,并通过时间维度的 mRoPE(多维旋转位置编码) 实现时间序列和速度学习,精准定位视频片段。

  • 结合ID和绝对时间对齐,增强对超长视频(如1小时以上)的事件捕捉能力,例如在评测集VideoMME中,72B模型达到73.3/79.1的得分,显著优于GPT-4o(71.9/77.2)。

    1. 视觉编码器优化
  • 采用窗口注意力机制和SwiGLU激活函数优化ViT架构,提升训练和推理速度,并与Qwen2.5的语言模型结构对齐。

  • 支持动态分辨率输入(每图4-16384视觉token),用户可通过min_pixels和max_pixels参数灵活平衡性能与计算成本。

二、多模态能力提升

    1. 文档解析与结构化输出
  • 升级至 全文档解析(Omnidocument Parsing) ,支持手写体、表格、化学公式、乐谱等多模态文档,并输出包含布局信息的Qwen HTML格式。

  • 在DocVQA和InfoVQA评测中,72B模型分别取得96.4和87.3的准确率,超越GPT-4o(91.1和80.7)。

    1. 视频理解与事件定位
  • 引入动态帧率采样和时间维度编码,支持小时级视频分析,例如在LVBench(长视频问答)中达到47.3分,远超GPT-4o的30.8分。

  • 细粒度视频定位能力突出,在CharadesSTA(事件时间定位)上72B模型得分50.9,对比GPT-4o的35.7有显著优势。

    1. 视觉代理与设备操作
  • 模型具备自主推理与工具调用能力,无需微调即可操作手机和电脑,例如在Android Control任务中,72B模型达到67.36/93.7的交互成功率。

  • 支持生成JSON格式的坐标输出(如bounding box和点定位),适用于自动化质检、机器人导航等场景。

三、模型性能与评测对比

    1. 权威评测表现
  • MMMU(多学科理解):70.2分 vs. GPT-4o的70.3分。

  • MathVista(数学视觉推理):74.8分 vs. GPT-4o的63.8分。

  • ScreenSpot Pro(界面元素定位):43.6分 vs. Claude3.5的17.1分。

  • 旗舰模型Qwen2.5-VL-72B在13项评测中夺冠,包括:

  • 轻量级模型Qwen2.5-VL-7B在OCRBenchV2(57.2分)和MMBench1.1(84.3分)等任务中超越GPT-4o-mini。

    1. 量化模型与部署优化
  • 发布3B、7B、72B的AWQ量化版本,支持低资源部署,例如72B模型在FP16精度下仅需134GB显存。

  • 提供Hugging Face和ModelScope接口,支持本地文件、URL、Base64等多种输入格式,并推荐使用flash_attention_2加速推理。

四、应用场景案例解析

    1. 金融与商业
  • 解析发票和表格,生成结构化JSON数据,例如在金融审核场景中实现自动化数据录入。

  • 文档布局还原能力可用于合同比对和报告生成,提升法律与审计效率。

    1. 内容创作与教育
  • 分析长视频并生成摘要,例如从1小时教学视频中提取知识点片段。

  • 支持多语言图表解析,辅助学术论文的数据可视化分析。

    1. 工业与物联网
  • 作为视觉代理控制机械臂或巡检机器人,例如在制造业中实现自动化质检。

  • 通过手机端操作实现智能家居控制,如语音指令联动摄像头监控。

五、行业评价与影响

    1. 技术领先性
  • 被评价为“首个开源且性能超越GPT-4o的多模态模型”,在视频理解、文档解析等场景树立新标杆。

  • 阿里巴巴强调其“感知-解析-推理”一体化能力,推动视觉Agent从理论走向实际应用。

    1. 开源生态建设
  • 模型在Hugging Face和ModelScope平台开源,配套发布**Cookbook**和微调指南(如使用ms-swift工具链)。

  • 社区反馈显示,其API兼容OpenAI协议,便于开发者迁移现有应用。

Qwen2.5-VL通过动态分辨率训练、视觉编码器优化和多模态能力增强,实现了文档解析、长视频理解与设备操作的突破。其在13项评测中的优异表现和开源策略,不仅巩固了阿里云在多模态AI领域的领先地位,也为开发者提供了强大的工具链和实际应用范例。未来,该模型在金融、教育、工业等场景的深度落地值得期待。

重点来了 —— 大白话总结Qwen2.5-VL大模型的突破性,打工人能怎么用它赚钱?看这里:

六、创新点一句话总结:

这个AI像“超人”一样,能看、能读、能操作!无论是模糊的表格、手写笔记、1小时的视频,还是手机屏幕,它都能快速理解,甚至帮你操作设备。比如:

  • 看视频:自动给1小时的网课视频分章节、写重点(类似AI剪辑师)。

  • 读文档:把乱糟糟的手写合同转成整齐的电子版,还能标出关键条款。

  • 操作手机:动动嘴说“把微信聊天记录导出成Excel”,它就能自动操作。

七、普通人赚钱的5个方向(无需写代码):

1️⃣ 电商&广告优化
  • 做什么:用AI批量处理商品图、生成卖点文案。

  • 案例:→ 开网店的人:上传商品图,AI自动抠图换背景+写营销文案,省设计费。→ 广告公司:让AI分析竞品广告视频,提炼爆款元素,优化自家广告。

2️⃣ 短视频&自媒体
  • 做什么:用AI自动剪视频、生成字幕、定位关键片段。

  • 案例:→ 知识博主:上传1小时直播录像,AI自动剪出10个“干货片段”发短视频。→ 影视解说:让AI快速定位电影里的高能镜头,省去手动拉进度条的时间。

3️⃣ 办公&教育工具
  • 做什么:把纸质文件变电子版、自动整理资料。

  • 案例:→ 学生/老师:拍下手写笔记,AI转成电子版+生成思维导图。→ 小公司:用AI扫描发票和合同,自动分类存档,省行政人力。

4️⃣ 智能客服&私域运营
  • 做什么:让AI看懂客户发的图片/视频,精准回复。

  • 案例:→ 淘宝店主:客户发商品瑕疵图,AI自动识别问题,秒回售后方案。→ 微商:客户发皮肤照片,AI分析肤质,推荐护肤品。

5️⃣ 本地化服务(门槛最低)
  • 做什么:用AI帮附近商家解决具体问题。

  • 案例:→ 餐馆老板:拍菜单照片→AI转成电子菜单+设计二维码。→ 房产中介:上传户型图,AI自动生成3D看房链接,发给客户。

八、上手三步走:

    1. 免费试玩:去阿里开放的体验平台(如ModelScope),上传图片/视频试试基础功能。
    1. 找细分需求:观察身边人抱怨“整理文件太麻烦”“剪视频好累”的问题,用AI解决。
    1. 低门槛变现:用现成工具(如钉钉/微信小程序)接入AI,收服务费。例如:→ 在闲鱼挂“AI自动整理合同/发票,5元一份”。→ 给本地餐馆做“AI电子菜单生成服务”,收199元/店。

关键提醒:

  • 别碰技术:别想着自己训练模型,直接用阿里开源好的接口。

  • 拼信息差:很多人还不知道这种AI能干啥,抢先提供解决方案就能赚钱。

  • 小而美:专注一个细分领域(比如“帮宝妈整理宝宝成长视频”),竞争更小。

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 比较DeepSeek-VL2Qwen2.5 VL 的技术特性 对于人工智能技术选型而言,选择合适的模型至关重要。在评估 DeepSeek-VL2Qwen2.5 VL 这两款多模态预训练模型时,可以从多个维度来进行考量。 #### 性能表现 性能方面,两种模型都展示了强大的能力,但在特定任务上可能存在差异。建议通过实际应用场景中的测试数据来衡量两者的表现,以获得直观的感受[^1]。 #### 开源程度和支持社区 考虑到长期维护和技术支持的重要性,在选择过程中也应关注各项目的开源情况及其背后的社区活跃度。部分项目可能提供为丰富的文档资源以及加及时的技术响应服务。 #### 集成难度与兼容性 不同框架之间的集成难易程度也是不可忽视的因素之一。某些情况下,一个易于与其他工具链对接并具有良好生态系统的解决方案可能会成为决定性的优势所在。 ```python # 示例代码用于展示如何调用两个API接口获取结果对比 import requests def get_model_response(model_name, input_data): url = f"https://api.example.com/{model_name}/predict" response = requests.post(url, json=input_data) return response.json() input_example = {"text": "example text", "image_url": "http://example.com/image.jpg"} deepseek_result = get_model_response('deepseek-vl2', input_example) qwen_result = get_model_response('qwen2.5_vl', input_example) print(f"DeepSeek-VL2 Result: {deepseek_result}") print(f"Qwen2.5 VL Result: {qwen_result}") ``` 为了做出最佳决策,推荐基于具体的应用场景开展小规模试验,利用开源版本或官方提供的试用 API 对这两个模型的效果进行验证,从而好地理解它们各自的特点和适用范围。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值