AI学习终极指南:构建你的全栈知识体系

前言

随着深度学习、自然语言处理、机器学习等技术的快速发展,人工智能在多个领域取得了突破性进展,如图像识别、语音识别、自然语言处理等。人工智能市场持续增长,预计2024年产业规模将达到6530亿元,这表明人工智能在各行各业的应用正逐步加深。目前已经渗透到医疗、金融、教育、交通等多个领域,不仅提高了效率,还推动了产业升级和智能化发展

所以说,人工智能正处于高速发展的阶段,其技术不断创新,市场规模不断扩大,应用领域广泛,为未来的智能化发展提供了强大的支撑。因此,如何学习人工智能是一个值得探讨的问题!
在这里插入图片描述

一、基础知识储备

  • 数学基础:
    线性代数:掌握矩阵运算、向量空间、特征值与特征向量等基本概念。
    微积分:理解导数、微分、积分等基本概念,为后续的优化算法打下基础。
    概率论与数理统计:理解随机变量、概率分布、统计量、参数估计等基本概念,为后续的机器学习算法提供理论基础。

  • 编程语言基础:
    推荐学习Python语言,因其语法简洁、易读性强,且拥有大量的人工智能相关库和框架。
    掌握Python的基本语法、数据类型、控制结构、函数等。
    学习Python的常用库,如NumPy、Pandas、Matplotlib等,为后续的数据处理和可视化提供工具支持。

二、进阶学习

  • 机器学习:
    理解机器学习的基本概念、分类、算法原理等。
    学习常见的机器学习算法,如线性回归、逻辑回归、决策树、支持向量机、朴素贝叶斯等。
    实践机器学习算法,通过实际项目来加深理解。
  • 深度学习:
    理解神经网络的基本原理、结构、激活函数、损失函数等。
    学习常见的深度学习框架,如TensorFlow、PyTorch等,掌握其使用方法和技巧。
    实践深度学习算法,如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等,通过实际项目来加深理解。

三、实践与应用

  • 参与项目:
    寻找与人工智能相关的项目,如图像识别、自然语言处理、推荐系统等,通过实际项目来检验所学知识。
    参与开源项目的开发,了解项目的组织架构、代码风格、协作方式等,提升团队协作能力。
  • 持续学习:
    人工智能是一个快速发展的领域,新技术和新应用不断涌现。因此,需要保持持续学习的态度,关注最新的技术趋势和应用场景。
    参加相关的技术社区、论坛、研讨会等,与同行交流经验、分享心得,拓宽视野。

四、学习资源推荐

  • 书籍:
    《Python编程:从入门到实践》:适合Python初学者入门。
    《深度学习》:花书,详细介绍了深度学习的原理和应用。
    《机器学习实战》:通过实际项目来讲解机器学习算法的应用。
  • 在线课程:
    B站上有大量的人工智能相关课程,可以免费学习。
    Coursera、网易云课堂等平台上也有丰富的人工智能课程供选择。
  • 开源社区:
    GitHub上有大量的开源项目和代码库,可以学习他人的代码和思路。
    Stack Overflow等问答社区可以解决在学习过程中遇到的问题。

在这里插入图片描述
如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值