RAG不好用?试试MCP这个“知识库优化大师”

在企业数字化转型浪潮中,如何有效管理和利用内部知识资产已成为关键挑战。随着大型语言模型(LLM)技术的成熟,检索增强生成(RAG)应用正逐渐成为连接企业知识与AI能力的重要桥梁。然而,传统RAG实现常面临检索质量不佳、实时更新困难等痛点问题。

本文将通过实战案例,详细介绍如何基于模型上下文协议(MCP)构建一套高性能企业RAG系统,帮助企业快速打造智能知识库应用。

MCP与传统RAG对比优势

传统RAG方案的局限

传统RAG实现通常采用简单的"Embedding+检索+LLM生成"架构,存在以下限制:

  1. 1. 紧耦合架构:检索逻辑与LLM调用紧密耦合,难以独立优化

  2. 2. 单一检索策略:通常只采用向量检索,缺乏多种检索方式结合

  3. 3. 缺乏标准化接口:各实现间接口差异大,难以实现功能复用

  4. 4. 维护成本高:系统升级需要修改大量底层代码

MCP解决方案的优势

基于MCP的RAG系统通过标准化协议,将知识检索服务解耦为独立模块,带来以下优势:

  1. 1. 标准化工具调用:MCP提供统一接口规范,降低集成成本

  2. 2. 解耦设计:将模型调用与业务逻辑分离,便于独立升级和维护

  3. 3. 灵活扩展:轻松添加新数据源和功能模块,如混合检索、多模态内容等

  4. 4. 工程实践友好:符合软件工程最佳实践,便于团队协作开发

  5. 图片

  6.                               图片源自 dailydoseofds

项目背景与需求

现代企业面临的知识管理挑战主要表现在以下几个方面:

  • • 知识分散:企业文档分布在多个系统中,缺乏统一检索入口

  • • 检索效率低:传统关键词检索无法理解语义,难以准确找到所需信息

  • • 知识更新慢:知识库更新依赖人工整理,无法及时反映最新情况

  • • 使用门槛高:专业术语和复杂查询语法提高了普通员工使用难度

针对这些问题,我们需要设计一个系统满足以下核心需求:

  1. 1. 智能检索:支持自然语言提问,理解问题意图和上下文

  2. 2. 知识自动化处理:实现文档智能拆分、FAQ自动提取

  3. 3. 灵活扩展:支持多种数据源和模型集成

  4. 4. 易于部署与维护:架构简洁,便于技术团队掌握和迭代

项目目标

本项目旨在构建一个基于MCP的企业RAG系统,实现以下具体目标:

  1. 1. 技术目标

    • • 构建支持MCP协议的知识库服务和客户端

    • • 实现文档智能切分、FAQ自动提取功能

    • • 支持复杂问题的拆解和混合检索策略

  2. 2. 应用目标

    • • 提供统一的知识库管理和检索入口

    • • 显著提升企业内部知识检索准确率(目标90%以上)

    • • 减少70%知识库维护工作量

    • • 支持企业各类文档的智能处理和检索

项目系统设计与实现

本项目系统设计参考自alibabacloud-tablestore-mcp-server[1],由于alibabacloud-tablestore-mcp-server项目使用Tablestore存储和Java实现的MCP Server,不方便于后期扩展和迭代。

本项目改造为Milvus存储和Python实现MCP Server和MCP Client,代码全部重写(cursor帮忙不少)。

以下设计和流程皆为alibabacloud-tablestore-mcp-server内容,在此感谢@xjtushilei 开源的alibabacloud-tablestore-mcp-server

我们构建的基于MCP的RAG系统主要包含三个核心部分:

  1. 1. 知识库服务(MCP Server):基于Milvus向量数据库实现的后端服务,负责文档存储和检索

  2. 2. 客户端工具(MCP Client):与MCP Server通信的客户端,实现知识库的构建和检索功能

  3. 3. 大模型集成:通过LLM实现文档切分、FAQ提取、问题拆解和回答生成等核心功能

流程图

流程图

主要分为两部分:知识库构建和检索。

  1. 1. 知识库构建

    1. 1. 文本切段: 对文本进行切段,切段后的内容需要保证文本完整性以及语义完整性。

    2. 2. 提取 FAQ: 根据文本内容提取 FAQ,作为知识库检索的一个补充,以提升检索效果。

    3. 3. 导入知识库: 将文本和 FAQ 导入知识库,并进行 Embedding 后导入向量。

  2. 2. 知识检索(RAG)

    1. 1. 问题拆解: 对输入问题进行拆解和重写,拆解为更原子的子问题。

    2. 2. 检索: 针对每个子问题分别检索相关文本和 FAQ,针对文本采取向量检索,针对 FAQ 采取全文和向量混合检索。

    3. 3. 知识库内容筛选: 针对检索出来的内容进行筛选,保留与问题最相关的内容进行参考回答。

相比传统的 Naive RAG,在知识库构建和检索分别做了一些常见的优化,包括 Chunk 切分优化、提取 FAQ、Query Rewrite、混合检索等。

流程

流程图

流程图

本Agent整体架构分为三个部分:

  1. 1. 知识库: 内部包含 Knowledge Store 和 FAQ Store,分别存储文本内容和 FAQ 内容,支持向量和全文的混合检索。

  2. 2. MCP Server: 提供对 Knowledge Store 和 FAQ Store 的读写操作,总共提供 4 个 Tools。

  3. 3. **功能实现部分:**完全通过 Prompt + LLM 来实现对知识库的导入、检索和问答这几个功能。

项目结构

项目结构分为两部分:

  1. 1. milvus-mcp-client Python 实现的 Client 端,实现了与大模型进行交互,通过 MCP Client 获取 Tools,根据大模型的反馈调用 Tools 等基本能力。通过 Prompt 实现了知识库构建、检索和问答三个主要功能。

  2. 2. ** milvus-mcp-server:** Python 实现的 Server 端,基于 MCP 框架实现的服务,提供了连接 Milvus 向量数据库的接口,支持知识库的存储和检索功能。

项目实战:从零搭建MCP-RAG系统

接下来,我们将从环境搭建、服务部署到功能测试,全面介绍如何搭建一个基于MCP的RAG系统。

环境准备

首先,确保满足以下系统要求:

  • • Docker 和 Docker Compose

  • • 至少 4CPU、4GB内存和20GB磁盘空间

  • • 克隆代码git clone -b rag_0.1.1 https://github.com/FlyAIBox/mcp-in-action.git

部署MCP Server

MCP Server基于Milvus向量数据库,提供了知识库的存储和检索功能。

对于需要进行开发或调试的场景,可以选择本地部署:

# 进入项目目录
cd mcp-rag

# 先启动Milvus及依赖服务
docker compose up -d etcd minio standalone

# 创建Python虚拟环境
python -m venv env-mcp-rag
source env-mcp-rag/bin/activate  

# 安装依赖
pip install -r requirements.txt

# 启动服务
python -m app.main

MCP Server的核心API

MCP Server提供四个核心工具,支持知识库的读写操作:

  1. 1. storeKnowledge:存储文档到知识库

  2. 2. searchKnowledge:在知识库中搜索相似文档

  3. 3. storeFAQ:存储FAQ到FAQ库

  4. 4. searchFAQ:在FAQ库中搜索相似问答对

让我们看看这些API的实际实现原理:

async defstore_knowledge(self, content: str, metadata: Dict[str, Any] = None) -> Dict[str, Any]:
    """存储知识内容到Milvus"""
    # 确保服务准备就绪
    awaitself.ready_for_connections()
    
    try:
        knowledge_content = KnowledgeContent(
            content=content,
            metadata=metadata or {}
        )
        self.milvus_service.store_knowledge(knowledge_content)
        return {"status": "success", "message": "Knowledge stored successfully"}
    except Exception as e:
        logger.error(f"Error storing knowledge: {e}")
        return {"status": "error", "message": str(e)}

这段代码展示了storeKnowledge工具的实现:接收文本内容和元数据,创建知识内容对象,然后通过Milvus服务存储到向量数据库中。

基于MCP Client实现RAG客户端

接下来,我们需要实现一个RAG客户端,通过MCP协议与Server通信,实现知识库的构建和查询功能。

1. 知识库构建
  • • 文本切分:对长文本进行智能切分,保证语义完整性

  • • FAQ提取:从文档自动生成常见问题解答对

  • • 向量化存储:将文本片段和FAQ转换为向量并存入Milvus

文本切分代码示例:

def _chunk_text(self, text: str) -> List[str]:
    """将文本分割成chunk,保证语义完整性"""
    chunks = []
    
    # 处理文本小于chunk_size的简单情况
    iflen(text) <= self.chunk_size:
        chunks.append(text)
        return chunks
        
    # 使用重叠策略分割文本
    start = 0
    while start < len(text):
        # 获取chunk结束位置
        end = start + self.chunk_size
        
        # 调整结束位置,避免在句子中间切断
        if end < len(text):
            # 寻找句子边界(句号、问号、感叹号)
            sentence_end = max(
                text.rfind('. ', start, end),
                text.rfind('? ', start, end),
                text.rfind('! ', start, end)
            )
            
            # 如果找到句子结束,使用它作为chunk结束
            if sentence_end > start:
                end = sentence_end + 1# 包含句号
        
        # 添加chunk
        chunks.append(text[start:min(end, len(text))])
        
        # 移动开始位置到下一个chunk,考虑重叠
        start = end - self.chunk_overlap
        
        # 确保进度
        if start >= len(text) or start <= 0:
            break
            
    return chunks

FAQ提取,通过LLM实现:

async def_extract_faqs(self, text: str) -> List[Dict[str, str]]:
    """从文本中提取FAQ"""
    # 对过长文本进行分块处理
    iflen(text) > 8000:
        chunks = self._chunk_text(text)
        faqs = []
        for chunk in chunks:
            chunk_faqs = awaitself._extract_faqs(chunk)
            faqs.extend(chunk_faqs)
        return faqs
        
     # FAQ提取的提示模板
     system_prompt = 
        """你是一位专业的知识提取专家。你的任务是从文本中提取可能的常见问题(FAQ)。
        这些问题应该是用户可能会问的关于文本内容的自然问题,答案应该能在文本中找到。
        提取的FAQ应该覆盖文本中最重要的概念和信息。

        请遵循以下规则:
        1. 每个FAQ由一个问题和一个答案组成
        2. 问题应该简短明了,直接针对主题
        3. 答案应该全面但简洁,提供文本中的相关信息
        4. 提取的FAQ数量应该基于文本长度和内容丰富度,通常不超过10个
        5. 确保提取的FAQ相互之间不重复
        6. 按照重要性排序,最重要的问题应该放在前面

        输出格式必须是一个JSON数组,每个FAQ是一个包含"question"和"answer"字段的对象,例如:
        [
          {
            "question": "问题1?",
            "answer": "答案1"
          },
          {
            "question": "问题2?",
            "answer": "答案2"
          }
        ]
        只输出JSON格式,不要有任何其他文本。"""
    user_prompt = f"""从以下文本中提取常见问题(FAQ):
    ```
    {text}
    ```
    请提取最相关、最有价值的FAQ,并按JSON格式返回。"""


   
   # 使用LLM提取FAQ
   response = self.llm_client.sync_generate(
       prompt=text,
       system_prompt=system_prompt,
       temperature=0.3
   )
   
   # 解析LLM响应获取FAQ
   # ...
2. 知识检索优化

与传统RAG不同,我们在检索环节引入了问题拆解、混合检索和结果筛选三个优化机制。

  • • 问题拆解:将复杂问题拆解为多个子问题

  • • 混合检索:同时检索文本库和FAQ库,提高召回率

  • • 结果筛选:对检索结果进行排序和筛选,优先保留高质量内容

问题拆解示例:

async def_decompose_question(self, question: str) -> List[str]:
    """将复杂问题分解为更简单的子问题"""
    system_prompt = 
    """你是一位问题分析专家。你的任务是将复杂问题分解为更简单的子问题,以便更好地检索相关信息。

    请遵循以下规则:
    1. 分析用户的问题,识别其中包含的不同方面或概念
    2. 将复杂问题拆分成更简单、更具体的子问题
    3. 确保子问题覆盖原始问题的所有关键方面
    4. 提供2-4个子问题,具体数量取决于原始问题的复杂度
    5. 子问题应该是明确的、有针对性的
    6. 子问题之间应该尽量避免重复

    输出格式必须是一个JSON数组,包含所有子问题的字符串,例如:
    ["子问题1", "子问题2", "子问题3"]

    如果原始问题已经足够简单,不需要分解,则返回只包含原始问题的JSON数组:
    ["原始问题"]

    只输出JSON格式,不要有任何其他文本。"""

    user_prompt = f"""请将以下问题分解为更简单的子问题以便检索:{question}"""
    
    # 使用LLM生成子问题
    response = self.llm_client.sync_generate(
        prompt=user_prompt,
        system_prompt=system_prompt,
        temperature=0.3
    )
    
    # 解析响应获取子问题列表
    # ...

结果筛选与生成回答的关键代码:

async def_filter_context(self, question: str, context_items: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
    """根据问题相关性筛选上下文"""
    # 简单筛选:去重和截断
    seen_contents = set()
    filtered_items = []
    
    # 优先处理FAQ类型
    faq_items = [item for item in context_items if item["type"] == "faq"]
    knowledge_items = [item for item in context_items if item["type"] == "knowledge"]
    
    # 先处理FAQ项
    for item in faq_items:
        # 去重处理
        # ...
    
    # 再处理知识项
    for item in knowledge_items:
        # 去重处理
        # ...
    
    # 限制上下文项总数
    max_context_items = 6
    iflen(filtered_items) > max_context_items:
        filtered_items = filtered_items[:max_context_items]
        
    return filtered_items

实际效果展示

部署完成后,让我们看看系统的实际运行效果:

1. 知识库构建
python -m app.main build --file test.md --title "RAG基本介绍" --author "企业知识库" --tags "LLM,RAG,知识库"

执行结果:

2025-05-11 14:50:16 | INFO | app.knowledge_builder:build_from_text:52 - Split text into 2 chunks
2025-05-11 14:50:59 | INFO | app.knowledge_builder:build_from_text:72 - Extracted 8 FAQs from text
2025-05-11 14:51:00 | INFO | __main__:build_knowledge_base:48 - Stored 2/2 chunks to knowledge base
2025-05-11 14:51:00 | INFO | __main__:build_knowledge_base:50 - Extracted and stored 8 FAQs

借助attu查看知识库构建结果

借助attu查看知识库构建结果

2. 知识检索问答
python -m app.main query --question "RAG相比企业传统的知识库有什么优势和缺点"

执行结果:

2025-05-11 15:01:46 | INFO | app.knowledge_retriever:query:39 - Decomposed question into 4 sub-questions
2025-05-11 15:01:47 | INFO | app.knowledge_retriever:query:67 - Filtered 28 context items to 6

================================================================================
问题: RAG相比企业传统的知识库有什么优势和缺点
--------------------------------------------------------------------------------
回答: 检索增强生成(RAG)是一种通过整合训练数据之外的权威知识库来优化大型语言模型(LLM)输出的技术。其核心在于允许LLM在生成响应前动态访问特定领域或组织的内部知识库,例如实时数据源、文档或专业数据库,而无需对模型本身进行重新训练。这种方式通过引入外部信息,显著提升了生成内容的相关性、准确性及实用性,同时保留了LLM的灵活性和泛化能力。
================================================================================

知识检索问答

知识检索问答

实施建议与最佳实践

根据实际项目经验,我们总结了以下最佳实践:

  1. 1. 文档处理策略

    • • 合理设置文本切分的大小(1000-1500字符)和重叠率(200-300字符)

    • • 根据文档类型调整切分策略,技术文档和叙述性文档要区别对待

    • • 保留文档原始格式信息作为元数据,提升检索精度

  2. 2. 检索优化技巧

    • • 使用混合检索(语义+关键词)提高召回率

    • • 在问题拆解环节设置合理的子问题数量(2-4个)

    • • 限制总上下文数量(5-8个)避免信息过载

  3. 3. 系统集成要点

    • • 选择合适的向量模型

    • • 针对实时更新需求设计增量索引策略

    • • 添加监控和日志记录,及时发现并解决问题

总结与展望

基于MCP实现的RAG系统代表了知识库建设的新方向。通过模型上下文协议,我们不仅解决了传统RAG系统中的诸多痛点,还为企业提供了一种低成本、高效率的知识管理方案。

未来,随着大模型技术的进步和MCP标准的完善,我们可以期待更多创新功能的出现:

  • • 多模态内容的支持(图像、音频、视频等)

  • • 更精准的实时知识更新机制

  • • 基于用户反馈的自适应检索优化

对于企业而言,现在正是开始探索和应用这一技术的最佳时机。通过MCP-RAG,企业可以充分挖掘自身知识资产的价值,为员工和客户提供更智能、更精准的信息服务。

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值