yolo单目测距深度学习目标检测算法 通过训练大量的带有深度信息的数据来训练 估计模型 构建基于深度学习Yolov5的单目测距检测识别

深度学习目标检测算法 通过训练大量的带有深度信息的数据来训练 估计模型 构建基于深度学习Yolov5的单目测距检测识别


yolo单目测距 在这里插入图片描述
1
在这里插入图片描述
1
在这里插入图片描述
构建一个基于YOLOv5的单目测距系统是一个涉及目标检测、深度估计和距离计算等多个步骤的过程。以下是一个详细的指南,包括环境搭建、模型训练、距离计算以及使用Python实现整个系统的代码示例。

1. 环境搭建

首先,确保你的开发环境已经安装了必要的库和工具。这里以Anaconda和PyTorch为例。

安装依赖
# 创建并激活虚拟环境
conda create -n yolov5 python=3.8
conda activate yolov5

# 安装PyTorch和YOLOv5
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
pip install -r requirements.txt

2. 数据准备

收集和标注数据集,用于训练YOLOv5模型进行目标检测。同时,需要一些带有深度信息的数据来训练深度估计模型。

数据预处理

对数据进行预处理,包括裁剪、缩放、归一化等操作,以便于模型训练。

import cv2
import numpy as np

def preprocess_image(image):
    # 裁剪和缩放
    image = cv2.resize(image, (640, 480))
    
    # 归一化
    image = image / 255.0
    
    return image

3. 模型训练

YOLOv5模型训练

使用YOLOv5进行目标检测模型训练。

# 训练YOLOv5模型
python train.py --img 640 --batch 16 --epochs 100 --data coco128.yaml --weights yolov5s.pt
深度估计模型训练

选择一个适合深度估计的深度学习模型,如DepthNet或DORN等。这里以DepthNet为例。

import torch
import torch.nn as nn
import torch.optim as optim

class DepthNet(nn.Module):
    def __init__(self):
        super(DepthNet, self).__init__()
        
        # Encoder
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
        
        # Decoder
        self.upconv3 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
        self.conv4 = nn.Conv2d(256, 128, kernel_size=3, padding=1)
        self.upconv2 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
        self.conv5 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
        self.conv6 = nn.Conv2d(64, 1, kernel_size=1)

    def forward(self, x):
        # Encoder
        x1 = F.relu(self.conv1(x))
        x2 = F.max_pool2d(F.relu(self.conv2(x1)), 2)
        x3 = F.max_pool2d(F.relu(self.conv3(x2)), 2)
        
        # Decoder
        x = F.relu(self.upconv3(x3))
        x = torch.cat((x2, x), dim=1)
        x = F.relu(self.conv4(x))
        x = F.relu(self.upconv2(x))
        x = torch.cat((x1, x), dim=1)
        x = F.relu(self.conv5(x))
        x = self.conv6(x)
        
        return x

# 初始化模型和优化器
model = DepthNet()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 定义损失函数
criterion = nn.MSELoss()

# 训练循环
for epoch in range(num_epochs):
    for images, depths in dataloader:
        optimizer.zero_grad()
        
        outputs = model(images)
        loss = criterion(outputs, depths)
        
        loss.backward()
        optimizer.step()
        
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')

4. 距离计算

在完成模型训练后,可以使用训练好的模型进行目标检测和深度估计,并计算目标的距离。

def calculate_distance(depth_map, bbox):
    x_min, y_min, x_max, y_max = bbox
    depth_values = depth_map[y_min:y_max, x_min:x_max]
    average_depth = np.mean(depth_values)
    
    # 假设相机焦距为f,图像中心点到物体的水平距离为d
    f = 500  # 相机焦距
    d = average_depth * f
    
    return d

# 使用YOLOv5进行目标检测
from yolov5.models.experimental import attempt_load
from yolov5.utils.datasets import LoadImages
from yolov5.utils.general import non_max_suppression

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = attempt_load('yolov5s.pt', map_location=device)

dataset = LoadImages('test_image.jpg')
for path, img, im0s, vid_cap in dataset:
    img = torch.from_numpy(img).to(device)
    img = img.float() / 255.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)

    pred = model(img, augment=False)[0]
    pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45)

    for det in pred:
        if len(det):
            for *xyxy, conf, cls in reversed(det):
                bbox = [int(x) for x in xyxy]
                
                # 使用深度估计模型计算深度图
                depth_map = depth_model(preprocess_image(im0s)).squeeze().detach().cpu().numpy()
                
                # 计算目标距离
                distance = calculate_distance(depth_map, bbox)
                print(f'Distance to object: {distance} meters')

5. 用户界面设计

使用PyQt5等库设计一个图形用户界面(GUI)。

from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton, QLabel, QVBoxLayout, QWidget, QFileDialog
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtCore import QTimer
import sys

class DistanceMeasurementApp(QMainWindow):
    def __init__(self):
        super().__init__()

        self.setWindowTitle("Yolo v5 单目测距系统")
        self.setGeometry(100, 100, 800, 600)

        self.label = QLabel(self)
        self.label.setGeometry(10, 10, 640, 480)

        self.open_button = QPushButton('打开图片', self)
        self.open_button.move(10, 490)
        self.open_button.clicked.connect(self.open_image)

        self.measure_button = QPushButton('开始测距', self)
        self.measure_button.move(170, 490)
        self.measure_button.clicked.connect(self.measure_distance)

    def open_image(self):
        options = QFileDialog.Options()
        file_name, _ = QFileDialog.getOpenFileName(self, "QFileDialog.getOpenFileName()", "", "Images (*.png *.xpm *.jpg *.bmp);;All Files (*)", options=options)
        if file_name:
            self.image_path = file_name
            self.display_image(file_name)

    def display_image(self, file_name):
        image = QImage(file_name)
        pixmap = QPixmap.fromImage(image)
        self.label.setPixmap(pixmap)

    def measure_distance(self):
        if hasattr(self, 'image_path'):
            image = cv2.imread(self.image_path)
            results = detect_objects_and_measure_distance(image, model, depth_model)
            
            for result in results:
                label, bbox, distance = result
                x_min, y_min, x_max, y_max = bbox
                cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
                cv2.putText(image, f'{label}: {distance:.2f} m', (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
            
            height, width, channel = image.shape
            bytes_per_line = 3 * width
            q_img = QImage(image.data, width, height, bytes_per_line, QImage.Format_RGB888)
            pixmap = QPixmap.fromImage(q_img)
            self.label.setPixmap(pixmap)

if __name__ == '__main__':
    app = QApplication(sys.argv)
    window = DistanceMeasurementApp()
    window.show()
    sys.exit(app.exec_())

以上就是构建一个基于YOLOv5的单目测距系统的详细步骤和关键代码示例。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值