“Achilles, Neural Network to Predict the Gold Vs US Dollar Integration with Trading Bot for Automatic Trading”
论文地址:https://arxiv.org/pdf/2410.21291v2
摘要
在机器学习领域,预测股市是一项极具挑战性的任务。尽管某些模型能够捕捉到股票市场的规律,但大多数难以直接应用于真实世界。我们开发的Achilles系统采用了经典的LSTM(长短期记忆)神经网络架构,该模型成功地用于预测黄金和美元等商品的价格。基于这一模型,我们构建并测试了一个交易机器人,并进行了为期一个月的实盘测试。测试期结束时,该机器人实现了1623.52美元的利润。
简介
机器学习在资产预测中的应用备受关注,但在加密货币、外汇和股票市场上的准确性仍有待提高。本文提出了一种新方法,利用LSTM模型(命名为Achilles)来预测黄金对美元的市场波动,认为黄金市场的特性和稳定性使其更易于被模型理解和预测。与现有的主要针对单只股票的日预测模型(如ARIMA和Prophet)不同,我们的研究专注于每分钟的商品价格预测。我们计划将这一预测模型与交易机器人相结合,通过实时买入和卖出操作来获取利润。这种方法旨在利用LSTM模型的强时间序列分析能力,捕捉高频交易机会,从而实现更精准的市场预测和更高的交易效率。
01 相关工作
股票市场预测日益受到关注,许多投资者希望通过简化的方式在不深入理解市场波动的情况下实现获利。Saber Talazadeh和Peraković结合随机森林和FinGPT情感分析来提升股票预测的准确性,本文实现了这一情感分析组件。Alamu和Kamrul Siam则采用了LSTM、GRU、ARIMA和ARMA等多种模型进行股票价格预测,其中LSTM因其能够有效捕捉非线性模式而表现出色,优于传统方法。
尽管许多研究专注于提高模型的准确性,但很少有研究将这些模型投入实际应用。本文聚焦于实际应用,计划在一个模拟交易环境中测试LSTM模型一个月,特别关注黄金与美元的价格预测。我们将整合Achilles预测系统和FinBERT新闻情感分析到交易机器人中,旨在通过实时数据分析和情感洞察来优化交易决策,从而为投资者提供更加可靠和有效的工具。
02 方法
数据
选择ETH-USD(以太坊)作为模型训练市场,因其数据量大且波动性强。2016年3月以太坊价格为$10.04,目前为$2,580.72。使用三种时间框架的数据:15分钟、5分钟和1分钟。训练数据包含682,434行,使用的特征包括开盘价、最高价、最低价、收盘价、成交量、RSI和EMA。
数据来源。15分钟和5分钟数据从2018年1月开始,1分钟数据从2024年1月开始。