方案一:
(1)参考链接:数字图像处理:基于霍夫变换的车道线检测
(2)代码: (python)
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
# 灰度图转换
def grayscale(image):
return cv.cvtColor(image, cv.COLOR_RGB2GRAY)
# Canny边缘检测
def canny(image, low_threshold, high_threshold):
return cv.Canny(image, low_threshold, high_threshold)
# 高斯滤波
def gaussian_blur(image, kernel_size):
return cv.GaussianBlur(image, (kernel_size, kernel_size), 0)
# 生成感兴趣区域即Mask掩模
def region_of_interest(image, vertices):
mask = np.zeros_like(image) # 生成图像大小一致的zeros矩
# 填充顶点vertices中间区域
if len(image.shape) > 2:
channel_count = image.shape[2]
ignore_mask_color = (255,) * channel_count
else:
ignore_mask_color = 255
# 填充函数
cv.fillPoly(mask, vertices, ignore_mask_color)
masked_image = cv.bitwise_and(image, mask)
return masked_image
# 原图像与车道线图像按照a:b比例融合
def weighted_img(img, initial_img, a=0.8, b=1., c=0.):
return cv.addWeighted(initial_img, a, img, b, c)
# def reset_global_vars():
#
# global SET_LFLAG
# global SET_RFLAG
# global LAST_LSLOPE
# global LAST_RSLOPE
# global LAST_LEFT
# global LAST_RIGHT
#
# SET_RFLAG = 0
# SET_LFLAG = 0
# LAST_LSLOPE = 0
# LAST_RSLOPE = 0
# LAST_RIGHT = [0, 0, 0]
# LAST_LEFT = [0, 0, 0]
def draw_lines(image, lines, color=[255,0,0], thickness=2):
right_y_set = []
right_x_set = []
right_slope_set = []
left_y_set = []
left_x_set = []
left_slope_set = []
slope_min = .35 # 斜率低阈值
slope_max = .85 # 斜率高阈值
middle_x = image.shape[1] / 2 # 图像中线x坐标
max_y = image.shape[0] # 最大y坐标
for line in lines:
for x1, y1, x2, y2 in line:
fit = np.polyfit((x1, x2), (y1, y2), 1) # 拟合成直线
slope = fit[0] # 斜率
if slope_min < np.absolute(slope) <= slope_max:
# 将斜率大于0且线段X坐标在图像中线右边的点存为右边车道线
if slope > 0 and x1 > middle_x and x2 > middle_x:
right_y_set.append(y1)
right_y_set.append(y2)
right_x_set.append(x1)
right_x_set.append(x2)
right_slope_set.append(slope)
# 将斜率小于0且线段X坐标在图像中线左边的点存为左边车道线
elif slope < 0 and x1 < middle_x and x2 < middle_x:
left_y_set.append(y1)
left_y_set.append(y2)
left_x_set.append(x1)
left_x_set.append(x2)
left_slope_set.append(slope)
# 绘制左车道线
if left_y_set:
lindex = left_y_set.index(min(left_y_set)) # 最高点
left_x_top = left_x_set[lindex]
left_y_top = left_y_set[lindex]
lslope = np.median(left_slope_set) # 计算平均值
# 根据斜率计算车道线与图片下方交点作为起点
left_x_bottom = int(left_x_top + (max_y - left_y_top) / lslope)
# 绘制线段
cv.line(image, (left_x_bottom, max_y), (left_x_top, left_y_top), color, thickness)
# 绘制右车道线
if right_y_set:
rindex = right_y_set.index(min(right_y_set)) # 最高点
right_x_top = right_x_set[rindex]
right_y_top = right_y_set[rindex]
rslope = np.median(right_slope_set)
# 根据斜率计算车道线与图片下方交点作为起点
right_x_bottom = int(right_x_top + (max_y - right_y_top) / rslope)
# 绘制线段
cv.line(image, (right_x_top, right_y_top), (right_x_bottom, max_y), color, thickness)
def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):
# rho:线段以像素为单位的距离精度
# theta : 像素以弧度为单位的角度精度(np.pi/180较为合适)
# threshold : 霍夫平面累加的阈值
# minLineLength : 线段最小长度(像素级)
# maxLineGap : 最大允许断裂长度
lines = cv.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap)
return lines
def process_image(image):
rho = 1 # 霍夫像素单位
theta = np.pi / 180 # 霍夫角度移动步长
hof_threshold = 20 # 霍夫平面累加阈值threshold
min_line_len = 30 # 线段最小长度
max_line_gap = 60 # 最大允许断裂长度
kernel_size = 5 # 高斯滤波器大小size
canny_low_threshold = 75 # canny边缘检测低阈值
canny_high_threshold = canny_low_threshold * 3 # canny边缘检测高阈值
alpha = 0.8 # 原图像权重
beta = 1. # 车道线图像权重
lambda_ = 0.
imshape = image.shape # 获取图像大小
# 灰度图转换
gray = grayscale(image)
# 高斯滤波
blur_gray = gaussian_blur(gray, kernel_size)
# Canny边缘检测
edge_image = canny(blur_gray, canny_low_threshold, canny_high_threshold)
# 生成Mask掩模
vertices = np.array([[(0, imshape[0]), (9 * imshape[1] / 20, 11 * imshape[0] / 18),
(11 * imshape[1] / 20, 11 * imshape[0] / 18), (imshape[1], imshape[0])]], dtype=np.int32)
masked_edges = region_of_interest(edge_image, vertices)
# 基于霍夫变换的直线检测
lines = hough_lines(masked_edges, rho, theta, hof_threshold, min_line_len, max_line_gap)
line_image = np.zeros_like(image)
# 绘制车道线线段
draw_lines(line_image, lines, thickness=10)
# 图像融合
lines_edges = weighted_img(image, line_image, alpha, beta, lambda_)
return lines_edges
if __name__ == '__main__':
# cap = cv.VideoCapture("./test_videos/solidYellowLeft.mp4")
# while(cap.isOpened()):
# _, frame = cap.read()
# processed = process_image(frame)
# cv.imshow("image", processed)
# cv.waitKey(1)
image = cv.imread('./test_images/solidYellowCurve2.jpg')
line_image = process_image(image)
cv.imshow('image',line_image)
cv.waitKey(0)
(3)效果
方案二:
参考链接:车道检测(Advanced Lane Finding Project)
代码:(C++)
#include <iostream>
#include <string>
#include <vector>
#include <set>
#include <unordered_set>
#include <opencv2/opencv.hpp>
#include <ceres/ceres.h>
/*#define IMG_WIDTH 1280
#define IMG_HIGHT 720
#define RGB 1
std::string image_path = "1.jpg";*/
#define IMG_WIDTH 1600
#define IMG_HIGHT 1200
#define RGB 0
std::string image_path = "1.png";
#define WIN_MARGIN 130
#define WIN_MINPIX 50
#define WIN_NUM 16
std::vector<cv::Point> src_point;
cv::Mat abs_sobel_thresh(cv::Mat img, std::string orient = "x", double thresh_min = 0, double thresh_max = 255) {
// 转化为灰度图像
cv::Mat gray;
if (RGB) {
cv::cvtColor(img, gray, cv::COLOR_RGB2GRAY);
} else {
cv::cvtColor(img, gray, cv::COLOR_BGR2GRAY);
}
// 求X或Y方向的方向梯度
cv::Mat abs_sobel;
if (orient == "x") {
cv::Sobel(gray, abs_sobel, CV_64F, 1, 0);
} else if (orient == "y") {
cv::Sobel(gray, abs_sobel, CV_64F, 0, 1);
}
cv::abs(abs_sobel);
// 阈值过滤
double max_value;
cv::Point2i max_location;
cv::minMaxLoc(abs_sobel, NULL, &max_value, NULL, &max_location);
cv::Mat scaled_sobel;
cv::convertScaleAbs(abs_sobel, scaled_sobel, 255 / max_value);
cv::Mat binary_output = cv::Mat::zeros(IMG_HIGHT, IMG_WIDTH, CV_32FC1);
for (int row = 0; row < IMG_HIGHT; ++row) {
for (int col =0; col < IMG_WIDTH; ++col) {
if (scaled_sobel.at<uchar>(row, col) >= thresh_min && scaled_sobel.at<uchar>(row, col) <= thresh_max)
binary_output.at<float>(row, col) = 255;
}
}
return binary_output;
}
cv::Mat color_thresh(cv::Mat img, cv::Point2f s_thresh, cv::Point2f l_thresh, cv::Point2f b_thresh, cv::Point2f v_thresh) {
// 将RGB图像转化成HLS,LUV,lab,HSV图像
cv::Mat hls, luv, lab, hsv;
if (RGB) {
cv::cvtColor(img, hls, cv::COLOR_RGB2HLS);
cv::cvtColor(img, luv, cv::COLOR_RGB2Luv);
cv::cvtColor(img, lab, cv::COLOR_RGB2Lab);
cv::cvtColor(img, hsv, cv::COLOR_RGB2HSV);
} else {
cv::cvtColor(img, hls, cv::COLOR_BGR2HLS);
cv::cvtColor(img, luv, cv::COLOR_BGR2Luv);
cv::cvtColor(img, lab, cv::COLOR_BGR2Lab);
cv::cvtColor(img, hsv, cv::COLOR_BGR2HSV);
}
// 提取hls中的s通道,luv中的l通道,lab中的b通道, hsv中的v通道
std::vector<cv::Mat> channels;
split(hls, channels);
cv::Mat s_channel = channels[2];
split(luv, channels);
cv::Mat l_channel = channels[0];
split(lab, channels);
cv::Mat b_channel = channels[2];
split(hsv, channels);
cv::Mat v_channel = channels[2];
//
cv::Mat s_binary = cv::Mat::zeros(IMG_HIGHT, IMG_WIDTH, CV_8UC1);
for (int row = 0; row < IMG_HIGHT; ++row) {
for (int col =0; col < IMG_WIDTH; ++col) {
if (s_channel.at<uchar>(row, col) >= s_thresh.x && s_channel.at<uchar>(row, col) <= s_thresh.y)
s_binary.at<uchar>(row, col) = 255;
}
}
cv::imshow("s_binary", s_binary);
cv::waitKey(0);
cv::Mat l_binary = cv::Mat::zeros(IMG_HIGHT, IMG_WIDTH, CV_8UC1);
for (int row = 0; row < IMG_HIGHT; ++row) {
for (int col =0; col < IMG_WIDTH; ++col) {
if (l_channel.at<uchar>(row, col) >= l_thresh.x && l_channel.at<uchar>(row, col) <= l_thresh.y)
l_binary.at<uchar>(row, col) = 255;
}
}
cv::imshow("l_binary", l_binary);
cv::waitKey(0);
cv::Mat b_binary = cv::Mat::zeros(IMG_HIGHT, IMG_WIDTH, CV_8UC1);
for (int row = 0; row < IMG_HIGHT; ++row) {
for (int col =0; col < IMG_WIDTH; ++col) {
if (b_channel.at<uchar>(row, col) >= b_thresh.x && b_channel.at<uchar>(row, col) <= b_thresh.y)
b_binary.at<uchar>(row, col) = 255;
}
}
cv::imshow("b_binary", b_binary);
cv::waitKey(0);
cv::Mat v_binary = cv::Mat::zeros(IMG_HIGHT, IMG_WIDTH, CV_8UC1);
cv::adaptiveThreshold(v_channel, v_binary, 255 ,cv::ADAPTIVE_THRESH_MEAN_C, cv::THRESH_BINARY, 115, -20);
/* for (int row = 0; row < IMG_HIGHT; ++row) {
for (int col =0; col < IMG_WIDTH; ++col) {
if (v_channel.at<uchar>(row, col) >= v_thresh.x && v_channel.at<uchar>(row, col) <= v_thresh.y)
v_binary.at<uchar>(row, col) = 255;
}
}*/
cv::imshow("v_binary", v_binary);
cv::waitKey(0);
// 提取同时满足以上4个通道阈值的像素点
cv::Mat combined = cv::Mat::zeros(IMG_HIGHT, IMG_WIDTH, CV_8UC1);
for (int row = 0; row < IMG_HIGHT; ++row) {
for (int col =0; col < IMG_WIDTH; ++col) {
//if (s_binary.at<uchar>(row, col) && l_binary.at<uchar>(row, col)
// && b_binary.at<uchar>(row, col) && v_binary.at<uchar>(row, col))
if(v_binary.at<uchar>(row, col))
combined.at<uchar>(row, col) = 255;
}
}
return combined;
}
cv::Mat perspective_transform(cv::Mat combined_binary, cv::Mat& M) {
// 求映射的关系矩阵
cv::Point2f src[4], dst[4];
/* src[0] = cv::Point2f(560, 470); // top left
src[1] = cv::Point2f(730, 470); // top right
src[2] = cv::Point2f(1080, 720); // bottom right
src[3] = cv::Point2f(200, 720); // bottom left*/
src[0] = src_point[0]; //cv::Point2f(669, 666); // top left
src[1] = src_point[1]; //cv::Point2f(818, 666); // top right
src[2] = src_point[2]; //cv::Point2f(1443, 1199); // bottom right
src[3] = src_point[3]; //cv::Point2f(76, 1199); // bottom left
/* dst[0] = cv::Point2f(200,0);
dst[1] = cv::Point2f(1100,0);
dst[2] = cv::Point2f(1100,720);
dst[3] = cv::Point2f(200,720);*/
dst[0] = cv::Point2f(200, 0);
dst[1] = cv::Point2f(1399, 0);
dst[2] = cv::Point2f(1399, 1199);
dst[3] = cv::Point2f(200, 1199);
M = cv::getPerspectiveTransform(src, dst);
cv::Mat warped;
cv::warpPerspective(combined_binary, warped, M, cv::Size(IMG_WIDTH, IMG_HIGHT));
return warped;
}
cv::Mat rgb_select(cv::Mat img, cv::Point2f r_thresh, cv::Point2f g_thresh, cv::Point2f b_thresh) {
std::vector<cv::Mat> channels;
split(img, channels);
cv::Mat r_channel = channels[0];
cv::Mat g_channel = channels[1];
cv::Mat b_channel = channels[2];
cv::Mat r_binary = cv::Mat::zeros(IMG_HIGHT, IMG_WIDTH, CV_8UC1);
for (int row = 0; row < IMG_HIGHT; ++row) {
for (int col =0; col < IMG_WIDTH; ++col) {
if (r_channel.at<uchar>(row, col) >= r_thresh.x && r_channel.at<uchar>(row, col) <= r_thresh.y)
r_binary.at<uchar>(row, col) = 255;
}
}
cv::Mat g_binary = cv::Mat::zeros(IMG_HIGHT, IMG_WIDTH, CV_8UC1);
for (int row = 0; row < IMG_HIGHT; ++row) {
for (int col =0; col < IMG_WIDTH; ++col) {
if (g_channel.at<uchar>(row, col) >= g_thresh.x && g_channel.at<uchar>(row, col) <= g_thresh.y)
g_binary.at<uchar>(row, col) = 255;
}
}
cv::Mat b_binary = cv::Mat::zeros(720, IMG_WIDTH, CV_8UC1);
for (int row = 0; row < 720; ++row) {
for (int col =0; col < IMG_WIDTH; ++col) {
if (b_channel.at<uchar>(row, col) >= b_thresh.x && b_channel.at<uchar>(row, col) <= b_thresh.y)
b_binary.at<uchar>(row, col) = 255;
}
}
cv::Mat combined = cv::Mat::zeros(IMG_HIGHT, IMG_WIDTH, CV_8UC1);
for (int row = 0; row < IMG_HIGHT; ++row) {
for (int col =0; col < IMG_WIDTH; ++col) {
if (r_binary.at<uchar>(row, col) && g_binary.at<uchar>(row, col)
&& b_binary.at<uchar>(row, col))
combined.at<uchar>(row, col) = 255;
}
}
return combined;
}
void draw_histogram(cv::Mat& image, cv::Mat& histogram){
//绘制直方图
int bins = IMG_WIDTH;
int scale = 1;
int his_height = IMG_HIGHT;
int his_width = bins * scale;
cv::Mat dstImage(his_height, his_width, CV_8UC3, cv::Scalar::all(0));
for (int i = 0; i < bins; ++i) {
int bin_value = cv::countNonZero(image.col(i));
histogram.at<float>(i) = bin_value;
if (i == bins-1) break;
cv::rectangle(dstImage, cv::Point(i*scale, his_height-1), cv::Point((i+1)*scale, his_height-bin_value*his_height/IMG_HIGHT), cv::Scalar(255, 255, 255));
int bin_value_next = cv::countNonZero(image.col(i+1));
cv::line(dstImage, cv::Point(i*scale, his_height-bin_value-1), cv::Point((i+1)*scale, his_height-bin_value_next-1),cv::Scalar(0, 0, 255),2,8,0);
}
cv::imshow("histogram", dstImage);
cv::waitKey(0);
}
struct Hash {
size_t operator() (const cv::Point &p) const {
return p.x;
}
};
cv::Mat draw_sliding_window(cv::Mat image, std::vector<cv::Point> left_box_pos, std::vector<cv::Point> right_box_pos,
std::unordered_set<cv::Point, Hash> left_lane_points, std::unordered_set<cv::Point, Hash> right_lane_points) {
cv::Mat disp;
cv::cvtColor(image, disp, CV_GRAY2BGR);
// draw box
std::for_each(left_box_pos.cbegin(), left_box_pos.cend(),
[&disp](cv::Point point){cv::rectangle(disp, cv::Rect(point.x,point.y,2*WIN_MARGIN,IMG_HIGHT/WIN_NUM), cv::Scalar(0,255,0));});
std::for_each(right_box_pos.cbegin(), right_box_pos.cend(),
[&disp](cv::Point point){cv::rectangle(disp, cv::Rect(point.x,point.y,2*WIN_MARGIN,IMG_HIGHT/WIN_NUM), cv::Scalar(0,255,0));});
// draw lane point
std::for_each(left_lane_points.cbegin(), left_lane_points.cend(),
[&disp](cv::Point point){cv::circle(disp, point, 1, cv::Scalar(0,0,255));});
std::for_each(right_lane_points.cbegin(), right_lane_points.cend(),
[&disp](cv::Point point){cv::circle(disp, point, 1, cv::Scalar(255,0,0));});
cv::imshow("disp", disp);
cv::waitKey(0);
return disp;
}
void callback(int event, int x, int y, int flags, void*) {
if(event == CV_EVENT_LBUTTONDOWN) {
src_point.push_back(cv::Point(x, y));
std::cout << src_point.size() << "th: (" << x << " " << y << ")" << std::endl;
} else if(event == CV_EVENT_RBUTTONDOWN) {
if (src_point.size() > 0) {
src_point.pop_back();
std::cout << "pop back !" << std::endl;
} else {
std::cout << "empty !" << std::endl;
}
}
}
struct ExponentialResidual {
ExponentialResidual(double x, double y) : x_(x), y_(y) {}
template <typename T>
bool operator()(const T* const k, T* residual) const {
residual[0] = T(x_) - (k[0]*T(y_)*T(y_) + k[1]*T(y_) + k[2]);
return true;
}
private:
const double x_;
const double y_;
};
std::vector<double> curve_fitting(const std::unordered_set<cv::Point, Hash>& lane_points) {
std::vector<double> params = {0,800,1}; // 优化变量初值
ceres::LossFunction* loss_function; // 鲁棒核函数
loss_function = new ceres::HuberLoss(1.0);
//loss_function = new ceres::CauchyLoss(0.5);
ceres::Problem problem;
for (cv::Point point : lane_points) {
ceres::CostFunction* cost_function =
new ceres::AutoDiffCostFunction<ExponentialResidual, 1, 3>(
new ExponentialResidual(point.x, point.y));
problem.AddResidualBlock(cost_function, loss_function, params.data()); // 默认squared loss
}
ceres::Solver::Options options;
options.linear_solver_type = ceres::DENSE_QR; // 增量方程如何求解
options.minimizer_progress_to_stdout = true; // 输出到cout
ceres::Solver::Summary summary;
ceres::Solve (options, &problem, &summary); // 开始优化
std::cout << summary.BriefReport() << std::endl; // .FullReport()
std::cout << "point_num: " << lane_points.size() << std::endl;
std::cout << "a: " << params[0] << " b: " << params[1] << " c: " << params[2] << std::endl;
return params;
}
void draw_curve(cv::Mat& canvas, std::vector<double> params) {
for (int y = 0; y < canvas.rows; ++y) {
int x = params[0]*y*y + params[1]*y + params[2];
cv::circle(canvas, cv::Point(x, y), 1, cv::Scalar(0,255,255));
cv::circle(canvas, cv::Point(x-1, y), 1, cv::Scalar(0,255,255));
cv::circle(canvas, cv::Point(x+1, y), 1, cv::Scalar(0,255,255));
}
}
int main(int argc, char **argv) {
cv::Mat color_image_source = cv::imread(image_path,cv::IMREAD_COLOR);
cv::namedWindow("source_image");
cv::imshow("source_image", color_image_source);
cv::Mat gray_source;
cv::cvtColor(color_image_source, gray_source, cv::COLOR_BGR2GRAY);
cv::adaptiveThreshold(gray_source, gray_source, 255 ,cv::ADAPTIVE_THRESH_MEAN_C, cv::THRESH_BINARY, 131, -15);
cv::imshow("gray", gray_source);
//cv::waitKey(0);
cv::setMouseCallback("source_image", callback, 0);
cv::waitKey(0);
// 畸变矫正
//cv::undistort();
cv::Mat color_image_distorted = color_image_source;
cv::Mat M;
cv::Mat warped = perspective_transform(color_image_distorted, M);
cv::imshow("warped", warped);
cv::waitKey(0);
// 索贝尔梯度
cv::Mat sobel_x = abs_sobel_thresh(warped, "x", 0, 255);
cv::Mat sobel_y = abs_sobel_thresh(warped, "y", 0, 255);
cv::Mat sobel_magnitude;
std::cout << "sobel_x type" << sobel_x.type() << std::endl;
cv::magnitude(sobel_x, sobel_y, sobel_magnitude);
cv::Mat binary_magnitude = cv::Mat::zeros(IMG_HIGHT, IMG_WIDTH, CV_8UC1);
for (int row = 0; row < IMG_HIGHT; ++row) {
for (int col =0; col < IMG_WIDTH; ++col) {
if (sobel_magnitude.at<float>(row, col) >= 100 && sobel_magnitude.at<float>(row, col) <= 255)
binary_magnitude.at<uchar>(row, col) = 255;
}
}
cv::imshow("sobel_magnitude", binary_magnitude);
cv::waitKey(0);
cv::Mat sobel_combined;
//cv::max(sobel_x, sobel_y, binary_magnitude);
cv::imshow("sobel_combined", binary_magnitude);
cv::waitKey(0);
// 使用hsv中的s通道,lab中的b通道,luv中的l通道,hsv中的v通道,提取满足阈值的像素点
//cv::Point2f s_thresh(230,255), l_thresh(60,255), b_thresh(50,255), v_thresh(200,255);
cv::Point2f s_thresh(100,255), l_thresh(60,255), b_thresh(50,255), v_thresh(100,255);
cv::Mat color_combined = color_thresh(warped, s_thresh, l_thresh, b_thresh, v_thresh);
cv::imshow("color_combined", color_combined);
cv::waitKey(0);
// 使用rgb通道,提取满足阈值的像素点
cv::Point2f R_thresh(200,255), G_thresh(200,255), B_thresh(0,255);
cv::Mat rgb_combined = rgb_select(warped, R_thresh, G_thresh, B_thresh);
cv::imshow("rgb_combined", rgb_combined);
cv::waitKey(0);
cv::Mat combined;
cv::max(binary_magnitude, rgb_combined, combined);
cv::max(combined, color_combined, combined);
cv::imshow("combined", combined);
cv::waitKey(0);
cv::Mat histogram(1, IMG_WIDTH, CV_32FC1);
draw_histogram(combined, histogram);
cv::Mat left_hist = histogram.colRange(0, IMG_WIDTH/2).clone();
cv::Mat right_hist = histogram.colRange(IMG_WIDTH/2, IMG_WIDTH).clone();
double left_max_val, right_max_val;
cv::Point left_max_loc, right_max_loc;
cv::minMaxLoc(left_hist, NULL, &left_max_val, NULL, &left_max_loc);
cv::minMaxLoc(right_hist, NULL, &right_max_val, NULL, &right_max_loc);
std::cout << "left_max_val: " << left_max_val << std::endl;
std::cout << "left_max_loc: " << left_max_loc.x << std::endl;
std::cout << "right_max_val: " << right_max_val << std::endl;
std::cout << "right_max_loc: " << (right_max_loc.x + IMG_WIDTH/2) << std::endl;
//通过滑移窗口找到图片中的车位线的位置
//使用使用滑动窗多项式拟合(sliding window polynomial fitting)来获取车道边界。这里使用9个200px宽的滑动窗来定位一条车道线像素:
//int nwindows = 15;
int window_height = IMG_HIGHT / WIN_NUM;
// Current positions to be updated for each window
int leftx_current = left_max_loc.x;
int rightx_current = right_max_loc.x + IMG_WIDTH/2;
// Set the width of the windows +/- margin
//int margin = 50;
// Set minimum number of pixels found to recenter window
//int minpix = 50;
// Create empty lists to receive left and right lane pixel indices
std::unordered_set<cv::Point, Hash> points_in_left_box, points_in_right_box;
std::unordered_set<cv::Point, Hash> left_lane_points, right_lane_points;
std::vector<cv::Point> left_box_pos, right_box_pos;
left_box_pos.push_back(cv::Point(leftx_current-WIN_MARGIN, IMG_HIGHT - window_height));
right_box_pos.push_back(cv::Point(rightx_current-WIN_MARGIN, IMG_HIGHT - window_height));
// Step through the windows one by one
for (int i = 0; i < WIN_NUM; ++i) {
// Identify window boundaries in x and y (and right and left)
int win_y_low = combined.rows - (i+1) * window_height;
int win_y_high = combined.rows - i * window_height;
int win_xleft_low = leftx_current - WIN_MARGIN;
int win_xleft_high = leftx_current + WIN_MARGIN;
int win_xright_low = rightx_current - WIN_MARGIN;
int win_xright_high = rightx_current + WIN_MARGIN;
// Identify the nonzero pixels in x and y within the window
for (int row = 0; row < combined.rows; ++row) {
for (int col = 0; col < combined.cols; ++col) {
if (combined.at<uchar>(row, col)) {
if (row >= win_y_low && row < win_y_high) {
if (col >= win_xleft_low && col < win_xleft_high) {
points_in_left_box.insert(cv::Point(col, row));
}
if (col >= win_xright_low && col < win_xright_high) {
points_in_right_box.insert(cv::Point(col, row));
}
}
}
}
}
// If you found > minpix pixels, recenter next window on their mean position
if (points_in_left_box.size() > WIN_MINPIX) {
int sum = 0;
for (cv::Point p : points_in_left_box) {
sum += p.x;
}
leftx_current = sum / points_in_left_box.size();
}
if (points_in_right_box.size() > WIN_MINPIX) {
int sum = 0;
for (cv::Point p : points_in_right_box) {
sum += p.x;
}
rightx_current = sum / points_in_right_box.size();
}
left_box_pos.push_back(cv::Point(leftx_current-WIN_MARGIN, IMG_HIGHT - window_height * (i+2)));
right_box_pos.push_back(cv::Point(rightx_current-WIN_MARGIN, IMG_HIGHT - window_height * (i+2)));
left_lane_points.insert(points_in_left_box.cbegin(), points_in_left_box.cend());
right_lane_points.insert(points_in_right_box.cbegin(), points_in_right_box.cend());
points_in_left_box.clear();
points_in_right_box.clear();
}
cv::Mat disp = draw_sliding_window(combined, left_box_pos, right_box_pos, left_lane_points, right_lane_points);
std::vector<double> left_curve_params, right_curve_params;
left_curve_params = curve_fitting(left_lane_points);
right_curve_params = curve_fitting(right_lane_points);
draw_curve(disp, left_curve_params);
draw_curve(disp, right_curve_params);
cv::imshow("disp", disp);
cv::waitKey(0);
cv::Mat lane_mask;
cv::warpPerspective(disp, lane_mask, M.inv(), cv::Size(IMG_WIDTH, IMG_HIGHT));
cv::Mat result;
cv::addWeighted(color_image_source, 1, lane_mask, 0.3, 0, color_image_source);
cv::imshow("result", color_image_source);
cv::waitKey(0);
return 0;
}
效果:
https://www.zhihu.com/question/54379931/answer/265236577