AI大模型 | 一文详细解析AI Agent智能体全景技术图与Agent 架构设计模式

一、AI Agent 智能体全景技术图

AI 等级划分:基于 Agent(智能体)能力的 AI 等级划分,可以借鉴类似自动驾驶级别的划分方式,将 AI 智能体的能力从低到高进行分级。以下是一个简化的 AI Agent 能力划分描述:

  • L0 - 没有人工智能
    在这一级别,Agent 并不具备人工智能特性,只能执行预定或固定的任务,没有感知、决策或学习的能力。

  • L1 - 规则符号智能
    Agent 开始具备基于规则的决策能力,能够根据预设的规则和符号进行简单的判断和执行。这种智能体通常只能处理特定情境下的任务,且缺乏灵活性和适应性。

  • L2 - 推理决策智能
    Agent 能够利用逻辑推理能力来解决问题,不再仅仅依赖于预设的规则。它能够根据当前的环境信息和目标,进行一定程度的推理和决策,以选择最合适的行动方案。

  • L3 - 记忆反思智能
    在 L3 级别,Agent 不仅具备推理决策能力,还开始拥有记忆和反思的能力。它能够记住过去的经验和教训,并在未来的决策中加以利用。这种智能体能够自我优化和改进,以适应不断变化的环境和任务。

  • L4 - 自主学习智能
    自主学习是 L4 级别 Agent 的主要特征。它能够自主地从数据中学习新知识和技能,无需人类的明确指导。这种智能体能够处理更复杂的问题,并在面对新情境时展现出更强的适应性和创造力。

  • L5 - 个性群体智能
    在最高级别,Agent 不仅具备高度自主的学习和决策能力,还展现出个性化的特征。它能够根据自身的特点和偏好来执行任务,并与其他 Agent 进行协作和沟通。此外,L5 级别的 Agent 还能够理解和适应人类社会的复杂性和多样性,与人类实现更加紧密和自然的交互。

在这里插入图片描述

  • AI Agent 智能体全景技术图

    在这里插入图片描述
    在这里插入图片描述

二、大模型 Agent 架构设计模式

架构设计模式已成为程序员的重要技能。然而,当我们转向大模型应用领域,情况可能会有所不同。面对新兴技术,比如:AI 大模型 Agent,我们尚缺乏成熟的设计模式来支撑这些解决方案。

根据我多年的架构设计经验,我在这里整理总结了一些针对大模型 Agent 应用的设计方法和架构模式,试图应对和解决大模型 Agent 应用实现中的一些挑战,比如:成本问题、延迟问题以及生成的幻觉等问题。

2.1 Agent 路由分发架构模式

当用户输入一个 Prompt 查询时,该查询会被发送到路由转发模块,而路由转发模块则扮演着对输入 Prompt 进行分类的角色。

在这里插入图片描述

如果 Prompt 查询是可以识别的,那么它会被路由到小模型进行处理,这通常是一个更准确、响应更快且成本更低的操作。然而,如果 Prompt 查询无法被识别,那么它将由大模型来处理。尽管大模型的运行成本较高,但它能够成功返回更多种类型查询的答案。通过这种方式,大模型应用产品可以在成本、性能和用户体验之间实现平衡。

2.2 大模型 Agent 代理架构模式

在任何一个生态系统中,都会有多个针对特定任务领域的专家,并行工作以处理特定类型的查询,然后将这些响应整合在一起,形成一个全面的答案。

在这里插入图片描述

这样的架构模式非常适合复杂的问题解决场景,在这种场景中,问题的不同方面需要不同的专业知识,就像一个由专家组成的小组,每个专家负责处理更大问题的一个方面。

更大的模型(比如:GPT-4)负责理解上下文,并将其分解为特定的任务或信息请求,这些任务或信息请求被传递给更小的代理模型。这些代理模型可能是较小模型,它们已经接受过特定任务的训练,或者是具有特定功能的通用模型,比如:BERT、Llama-2、上下文提示和函数调用。

2.3 基于缓存的微调 Agent 架构模式

将缓存和微调引入到大模型应用架构中,可以解决成本高、推理速度慢以及幻觉等组合问题。

在这里插入图片描述

通过缓存初始结果,能够在后续查询中迅速提供答案,从而显著提高了效率。

当我们累积了足够的数据后,微调层将启动,利用早期交互的反馈,进一步完善一个更为专业化的私有大模型。

专有私有大模型不仅简化了操作流程,也使专业知识更好地适应特定任务,使其在需要高度精确性和适应性的环境中,比如:客户服务或个性化内容创建,表现得更为高效。

对于刚入门的用户,可以选择使用预先构建的服务,比如:GPTCache,或者使用常见的缓存数据库:Redis、Cassandra、Memcached 来运行自己的服务。

2.4 面向目标的 Agent 架构模式

对于用户的 Prompt 提示词,Agent 会基于大模型先做规划(Planning),拆解成若干子任务,然后对每个子任务分别执行(Action),同时对每一步的执行结果进行观测(Observation),如果观测结果合格,就直接返回给用户最终答案,如果观测结果不合格或者执行出错,会重新进行规划(Replanning)。

在这里插入图片描述

这种面向目标的 Agent 架构模式非常常见,也是 AGI 大模型时代,每一个程序员同学都需要掌握的架构设计模式。

2.5 Agent 智能体组合架构模式

该架构设计模式强调了灵活性,通过模块化 AI 系统,能自我重新配置以优化任务性能。这就像一个多功能工具,可以根据需求选择和激活不同的功能模块,对于需要为各种客户需求或产品需求定制解决方案的企业来说,这是非常有效的。

在这里插入图片描述

可以通过使用各种自主代理框架和体系结构来开发每个 Agent 智能体,比如:CrewAI、Langchain、LLamaIndex、Microsoft Autogen 和 superAGI 等。

通过组合不同的模块,一个 Agent 可以专注于预测,一个处理预约查询,一个专注于生成消息,一个 Agent 来更新数据库。将来,随着专业 AI 公司提供的特定服务的增多,我们可以将一个模块替换为外部或第三方服务,以处理特定的任务或领域的问题。

2.6 Agent 双重安全架构设计模式

围绕大模型的核心安全性至少包含两个关键组件:一是用户组件,我们将其称为用户 Proxy 代理;二是防火墙,它为大模型提供了保护层。

在这里插入图片描述

用户 Proxy 代理在查询发出和返回的过程中对用户的 Prompt 查询进行拦截。该代理负责清除个人身份信息和知识产权信息,记录查询的内容,并优化成本。

防火墙则保护大模型及其所使用的基础设施。尽管我们对人们如何操纵大模型以揭示其潜在的训练数据、潜在功能以及当今恶意行为知之甚少,但我们知道这些强大的大模型是脆弱的。

在安全性相关的技术栈中,可能还存在其他安全层,但对于用户的查询路径来说,Proxy 代理和防火墙是最关键的。

三、Agent 框架总结


单智能体 = 大语言模型(LLM) + 观察(obs) + 思考(thought) + 行动(act) + 记忆(mem)
多智能体 = 智能体 + 环境 + SOP + 评审 + 通信 + 成本
多智能体优点:

  • 多视角分析问题:虽然 LLM 可以扮演很多视角,但会随着 system prompt 或者前几轮的对话快速坍缩到某个具体的视角上;
  • 复杂问题拆解:每个子 agent 负责解决特定领域的问题,降低对记忆和 prompt 长度的要求;
  • 可操控性强:可以自主的选择需要的视角和人设;
  • 开闭原则:通过增加子 agent 来扩展功能,新增功能无需修改之前的 agent;
  • (可能)更快的解决问题:解决单 agent 并发的问题;

多智能体缺点:

  • 成本和耗时的增加;
  • 交互更复杂、定制开发成本高;
  • 简单的问题 single Agent 也能解决;

多智能体能解决的问题:

  • 解决复杂问题;
  • 生成多角色交互的剧情;

Multi-Agent 并不是 Agent 框架的终态,Multi-Agent 框架是当前有限的 LLM 能力背景下的产物,更多还是为了解决当前 LLM 的能力缺陷,通过 LLM 多次迭代、弥补一些显而易见的错误,不同框架间仍然存在着极高的学习和开发成本。随着 LLM 能力的提升,未来的 Agent 框架肯定会朝着更加的简单、易用的方向发展。

应用方向

游戏场景(npc 对话、游戏素材生产)、内容生产、私域助理、OS 级别智能体、部分工作的提效

3.1 Multi-Agent 框架

多 agent 应该像人类的大脑一样,分工明确、又能一起协作,比如,大脑有负责视觉、味觉、触觉、行走、平衡,甚至控制四肢行走的区域都不一样。

参考 MetaGPT 和 AutoGen 生态最完善的两个 Multi-Agent 框架,可以从以下几个角度出发:

环境 & 通讯:Agent 间的交互,消息传递、共同记忆、执行顺序,分布式 agent,OS-agent
SOP:定义 SOP,编排自定义 Agent
评审:Agent 健壮性保证,输入输出结果解析
成本:Agent 间的资源分配
Proxy:自定义 proxy,可编程、执行大小模型

在这里插入图片描述

3.2 Single Agent 框架

执行架构优化 论文数据支撑

CoT to XoT,从一个 thought 一步 act 到一个 thought 多个 act,从链式的思考方式到多维度思考;

长期记忆的优化: 具备个性化能力的 agent,模拟人的回想过程,将长期记忆加入 agent 中;
多模态能力建设: agent 能观察到的不仅限于用户输入的问题,可以加入包括触觉、视觉、对周围环境的感知等;
自我思考能力: 主动提出问题,自我优化;

在这里插入图片描述


四、最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

### AI Agent 架构设计 #### 设计原则 AI Agent架构设计需遵循灵活性、扩展性和适应性的基本原则。为了实现这些目标,通常采用模块化的设计方法,使得各个组件可以独立开发和优化,同时也便于集成新的技术和算法[^3]。 #### 主要组成部分 典型的 AI Agent 架构由以下几个核心部分组成: - **感知层** 负责接收来自环境的信息输入,如视觉数据、听觉信号或其他传感器读数。这部分对于理解周围世界至关重要,并为后续决策提供基础信息[^1]。 - **认知层** 包括但不限于机器学习模型、推理引擎以及自然语言处理工具等高级功能模块。此层次负责解释感知到的数据,形成对当前情境的理解,并据此做出合理的判断或预测[^2]。 - **执行层** 基于上一层得出的结果采取具体行动,比如移动机器人手臂、发送语音回复或是调整参数设置等实际操作行为。该层还涉及到动作规划控制策略的选择和实施。 - **反馈机制** 实现自我监督学习的关键环节之一,在每次完成任务之后收集结果反馈,用于评估表现优劣并指导未来改进方向;同时也能帮助系统更好地理解和应对复杂多变的真实场景需求[^4]。 ```python class AIAgent: def __init__(self): self.perception_module = PerceptionModule() self.cognition_module = CognitionModule() self.execution_module = ExecutionModule() self.feedback_system = FeedbackSystem() def process(self, input_data): perception_output = self.perception_module.analyze(input_data) cognition_result = self.cognition_module.reason(perception_output) action_plan = self.execution_module.plan(cognition_result) outcome = self.execution_module.execute(action_plan) # 收集反馈以供后续迭代使用 feedback = self.feedback_system.collect(outcome) return outcome, feedback ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值