AI Agent 智能体全景技术图
上述这张图是 AI Agent 智能体平台的技术堆栈,分成多个模块,各自有不同的功能和角色。以下是对各模块做个解读(从上到下进行解读):
第一、垂直智能体(Vertical Agents)
- 包含一些专注于特定领域或任务的 AI 智能体公司,比如:Perplexity AI 搜索智能体、Replit AI 编程智能体、Decagon 智能体等。这些智能体通常提供针对性解决方案。
第二、智能体托管与服务(Agent Hosting & Serving)
-
提供平台和 API 用于托管和运行 AI 智能体,比如:LangGraph、Letta、Amazon Bedrock Agents 等。这些服务帮助开发者更方便地部署和管理 AI 模型。
-
它的发展方向将 Agent 作为服务部署到基础设施,并通过 REST API 访问,挑战在于状态管理、安全工具执行等,这一层面的发展将使 AI Agent 更容易集成到各类应用中,从而推动其广泛应用。
第三、可观测性(Observability)
- 可观测性工具用于监控和分析 AI 智能体的性能和行为,比如:LangSmith、Arize 等。这些工具确保系统的可靠性和高效性。
第四、智能体框架(Agent Frameworks)
-
提供开发框架以便构建 AI 智能体,比如:LangGraph、AutoGen、LlamaIndex、Semantic Kernel 等。这些框架简化了创建和训练 AI 模型的过程。
-
Agent 框架是构建复杂 AI 系统的基础,它们在状态管理、上下文结构、跨Agent 通信等方面各有特色。
第五、记忆(Memory)
- 记忆技术用于存储和检索 AI 智能体生成的信息,比如:MemGPT、LangMem、mem0 等。类似于人类记忆,帮助智能体保留上下文信息。
第六、工具库(Tool Libraries)
-
包含一些常用的开发工具库,比如:Composio、Browserbase 等,提供额外功能支持。
-
工具定义方式为 OpenAI 的JSON schema,工具生态包括:LangChain、CrewAI、Composio 等,工具赋予 AI Agent 与外部世界交互的能力,极大扩展了其应用范围。随着生态系统的发展,AI Agent 将能胜任越来越多样化的任务。
第七、沙盒环境(Sandboxes)
-
安全测试环境,用于模拟和测试 AI 智能的行为,比如:E2B、Modal。这种环境有助于在安全条件下验证新功能。
第八、模型服务(Model Serving)
-
平台用于部署机器学习模型以供使用,比如:VLLM、OpenAI 等。帮助将训练好的模型投入生产应用。
-
核心组件:LLM(大型语言模型)
关键技术:推理引擎
主要提供商:
* 私有模型: OpenAI, Anthropic
* 开源模型: Together.AI, Fireworks, Groq
模型服务是 AI Agent 的大脑,决定了其理解和生成能力。选择合适的模型和服务提供商对智能体的性能至关重要。
第九、存储(Storage)
-
数据存储解决方案,用于保存大量数据供 AI 系统使用,比如:Chroma、Pinecone 等。确保数据高效、安全地存取。
-
主要形式: 向量数据库
流行选择: Chroma, Weaviate, Pinecone, Qdrant, Milvus
特殊方案: Postgres + pgvector 扩展
存储解决方案使 AI Agent 具备记忆能力,能够保存和检索相关信息,实现长期学习和任务连续性。每个模块在整个系统中都有其特定作用,共同组成一个完整且高效的 AI 智能体生态。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。