约定:
李代数 ϕ \phi ϕ的指数映射: e x p ( ϕ ∧ ) exp(\phi^\wedge) exp(ϕ∧)
旋转矩阵 R R R的对数映射: l n ( R ) ∨ ln(R)^\vee ln(R)∨
另一个,李代数 φ \varphi φ是一个小量
公式1:BCH公式(线性近似公式)
e x p ( ϕ ∧ ) e x p ( φ ∧ ) = e x p [ ( ϕ + J r ( ϕ ) − 1 φ ) ∧ ] exp(\phi^\wedge)exp(\varphi^\wedge)=exp[(\phi+J_r(\phi)^{-1}\varphi)^\wedge] exp(ϕ∧)exp(φ∧)=exp[(ϕ+Jr(ϕ)−1φ)∧]
BCH公式给出了两个李代数指数映射乘积的结果。下面是一个等价的表达:
l n [ e x p ( ϕ ∧ ) e x p ( φ ∧ ) ] ∨ = ϕ + J r ( ϕ ) − 1 φ ln[exp(\phi^\wedge)exp(\varphi^\wedge)]^\vee=\phi+J_r(\phi)^{-1}\varphi ln[exp(ϕ∧)exp(φ∧)]∨=ϕ+Jr(ϕ)−1φ
公式2: S O ( 3 ) SO(3) SO(3)上的伴随性质
R e x p ( p ∧