雷达作用距离、干扰距离、侦查距离

目录

1. 雷达作用距离

2. 干扰机干扰距离

2.1 干扰机的基本组成

2.2 干扰机的主要性能要求

2.3 干扰机的有效干扰空间

3. 雷达侦查距离

3.1 简化侦查方程

3.2 修正侦查方程


1. 雷达作用距离

        雷达的最基本任务是探测目标并测量其坐标,因此,作用距离是雷达的重要性能指标之一,它决定了雷达能在多大的距离上发现目标。作用距离的大小取决于雷达本身的性能,其中有发射机、接收系统、天线等分机的参数,同时又和目标的性质及环境因素有关。

        通常噪声是检测并发现目标信号的一个基本限制因素。由于噪声的随机特性,使得作用距离的计算只能是一个统计意义上的量。再加上无法精确知道目标特性以及工作时的环境因素,从而使作用距离的计算只能是一种估算和预测。然而,对雷达作用距离的研究工作仍是很有价值的,它能表示出当雷达参数或环境特性变化时相对距离变化的规律。雷达方程集中地反映了与雷达探测距离有关的因素以及它们之间的相互关系。研究雷达方程可以用它来估算雷达的作用距离,同时可以深入理解雷达工作时各分机参数的影响,对于雷达系统设计中正确地选择分机参数具有重要的指导作用。

雷达方程

        本节先集中研究最常用的一次雷达,它是依靠目标后向散射的回波能量来探测目标的。下面推导基本雷达方程,以便确定作用距离和雷达参数及目标特性之间的关系。首先讨论在理想无损耗、自由空间传播时的单基地雷达方程,然后再逐步讨论各种实际条件的影响。

基本雷达方程:

        设雷达发射功率为 P_{t} ,雷达天线的增益为 G_{t} ,则在自由空间工作时,距离雷达天线 R 的目标处的功率密度 S_{1} 为

S_{1}=\frac{P_{t}G_{t}}{4\pi R^{2}}

        目标受到发射电磁波的照射,因其散射特性而将产生散射回波。散射功率的大小显然和目标所在点的发射功率密度 S_{1} ;以及目标的特性有关。用目标的散射截面积 \sigma 来表征其散射特性。若假定目标可将接收到的功率无损耗地辐射出来,则可得到由目标散射的功率(二次辐射功率)为

P_{2}=\sigma S_{1}=\frac{P_{t}G_{t}\sigma }{4\pi R^{2}}

        又假设 P_{2} 均匀地辐射,则在接收天线处收到的回波功率密度为

S_{2}=\frac{P_{2}}{4\pi R^{2}}=\frac{P_{t}G_{t}\sigma }{(4\pi R^{2})^{2})}

         如果雷达接收天线的有效接收面积为 A_{r} ,则在雷达接收处回波功率为 P_{r} ,而

P_{r}=A_{r}S_{2}=\frac{P_{t}G_{t}A_{r}\sigma }{(4\pi R^{2})^{2}}

         由天线理论知道,天线增益和有效面积之间有以下关系:

G=4\pi A/\lambda ^{2}                                                  (5.1.4)

         式中,\lambda 为所用波长,则接收回波功率可写成如下形式:

P_{r}=\frac{P_{t}G_{t}G_{r}\lambda ^{2}\sigma }{(4\pi )^{3}R^{4}}

P_{r}=\frac{P_{t}A_{t}A_{r}\sigma }{4\pi \lambda ^{2}R^{4}}                                                 (5.1.6)

        单基地脉冲雷达通常是收发共用天线,即 G_{t}=G_{r}=G,A_{t}=A_{r},将此关系式带入以上两式即可得到常用结果。

        由式(5.1.4)~式(5.1.6)可看出,接收的回波功率 P_{r} 反比于目标与雷达站间的距离 R 的四次方,这是因为一次雷达中,反射功率经过往返双倍的距离路程,能量衰减很大。接收到的功率 P_{r} 必须超过最小可检测信号功率 S_{i\, min} ,雷达才能可靠地发现目标,当P_{r} 正好等于S_{i\, min} 时,就可得到雷达检测该目标的最大作用距离R_{max}。因为超过这个距离,接收的信号功率 P_{r} 进一步减小,因此不能可靠地检测到该目标。它们的关系式可以表达为

 P_{r}=S_{i\, min}=\frac{P_{t}\sigma A_{r}^{2}}{4\pi \lambda ^{2}R_{max}^{4}}=\frac{P_{t}G^{2}\lambda ^{2}\sigma }{(4\pi )^{3}R_{max}^{4})}

 R_{max}=\left [ \frac{P_{t}\sigma A_{r}^{2}}{4\pi \lambda ^{2}S_{i\, min}} \right ]^{1/4}                                                (5.1.8)

R_{max}=\left [ \frac{P_{t}\sigma G^{2}\lambda ^{2}}{(4\pi )^{3}S_{i\, min}} \right ]^{1/4}                                                (5.1.9)

         式(5.1.8)、式(5.1.9)是雷达距离方程的两种基本形式,它表明了作用距离 R_{max} 和雷达参数以及目标特性间的关系。在式(5.1.8)中,R_{max} 与 \lambda ^{1/2} 成反比,而在式(5.1.9)中,R_{max} 却和\lambda ^{1/2} 成正比。这是由于当天线面积不变时,波长 \lambda 增加时天线增益下降,导致作用距离减小;而当天线增益不变时,波长增大时要求的天线面积亦相应加大,有效面积增加,其结果是作用距离加大。雷达的工作波长是整机的主要参数,它的选择将影响到诸如发射功率、接收灵敏度、天线尺寸、测量精度等众多因素,因而要全面权衡。

        雷达方程虽然给出了作用距离和各参数间的定量关系,但因未考虑设备的实际损耗和环境因素,而且方程中还有两个不可能准确预定的量:目标有效反射面积 \sigma 和最小可检测信号S_{i\, min},因此它常用来作为一个估算的公式,考察雷达各参数对作用距离影响的程度。

        雷达总是在噪声和其他干扰背景下检测目标的,再加上复杂目标的回波信号本身也是起伏的,故接收机输出的是随机量。雷达作用距离也不是一个确定值,而是统计值,对于某雷达来讲,不能简单地说它的作用距离是多少,通常只在概率意义上讲,当虚警概率(如10^{-6})和发现概率(如90%)给定时的作用距离是多大。

 

对式(5.1.9)计算示例:

        若P_{t}=100kW,G_{t}=G_{r}=23dB,\lambda=5cm,S_{i\, min}=-110dBm,\sigma=5m^{2},求R_{max}

 (1)先进行单位换算

P_{t}=10^{5}WG_{t}=G_{r}=10^{2.3}\lambda=0.05mS_{i\, min}=10^{-11}mW=10^{-14}W\sigma=5m^{2}

(2)代入,R_{max}=\left [ \frac{10^{5}\times 5 \times 10^{4.6}\times 0.05 ^{2}}{(4\pi )^{3}\times 10^{-14}} \right ]^{1/4}\approx 39795m

2. 干扰机干扰距离

2.1 干扰机的基本组成

干扰机的基本组成:

 遮盖式干扰资源的基本组成:

 转发式干扰资源的基本组成:

2.2 干扰机的主要性能要求

(1)有效辐射功率

        有效辐射功率是干扰机的发射功率P_{J}与干扰发射天线增益G_{J}的乘积,即P_{J}G_{J}。它表现了干扰机工作时在主瓣方向的干扰功率密度。

(2)干扰频率

(3)干扰空间范围

(4)引导误差

(5)引导时间\bigtriangleup t_{j}

        从接收到威胁雷达信号到输出射频干扰信号的时间

(6)对多威胁雷达的干扰能力

2.3 干扰机的有效干扰空间

雷达、目标和干扰机之间的空间关系图:

干扰方程:

        雷达天线以其主瓣指向目标,干扰发射天线以其主瓣指向雷达。干扰机、目标与雷达的相对波束张角为\theta

        雷达收到的目标回波信号功率P_{rs}和干扰信号功率P_{rj}分别为:

P_{rs}=\frac{P_{t}G_{t}\sigma A}{(4\pi R_{t}^{2})^{2}}=\frac{P_{t}G_{t}^{2}\lambda ^{2}}{(4\pi )^{2}R_{t}^{4}}

P_{rj}=\frac{P_{J}G_{J}G_{t}(\theta )\lambda ^{2}\gamma _{J}}{(4\pi )^{2}R_{J}^{2}}

        P_{t}(W)表示雷达发射功率,G_{t}(dB)为天线增益,\sigma(m^{2})为目标的雷达截面积,A(m^{2})为雷达天线的有效面积,\lambda(m)为波长,R_{t}(m)为雷达与目标间距; P_{J}(W)为干扰发射功率,G_{J}为干扰发射天线增益;G_{t}(\theta )为雷达天线在干扰方向的增益;\gamma _{J}为干扰信号与雷达信号极化适配损失系数,R_{J}(m)为雷达与干扰机的间距。

        雷达接收机输入端干扰和目标回波信号功率比J/S

 \frac{J}{S}=\frac{P_{rj}}{P_{rs}}=\frac{P_{J}G_{J}G_{t}(\theta )4\pi \gamma _{j}R_{t}^{4}}{P_{t}G_{t}^{2}\sigma R_{J}^{2}}

        实现有效干扰的基本条件

J/S\geqslant K_{J}

\frac{P_{J}G_{J}G_{t}(\theta )4\pi \gamma _{j}R_{t}^{4}}{P_{t}G_{t}^{2}\sigma R_{J}^{2}}\geqslant K_{J}

        K_{J}称为压制系数,它是干扰信号调制样式、调制参数和雷达信号参数的复杂函数。

        整理后可得到干扰机的有效干扰空间:

G_{t}(\theta )R_{t}^{4}\geqslant K_{J}\frac{P_{t}G_{t}^{2}R_{J}^{2}}{P_{J}G_{J}4\pi \gamma _{J}}

        有效干扰空间是在一个以R_{t}为半径的球体之外的空间。

        当目标、雷达、干扰机同方向时,\theta =0G_{t}(\theta )=G_{t}R_{t}最小,称为最小干扰距离R_{t\, min}

R_{t\, min}\geqslant (K_{J}\frac{P_{t}G_{t}\sigma R_{J}^{2}}{P_{J}G_{J}4\pi \gamma _{J}})

        对有效辐射功率的要求:

P_{J}G_{J}\geqslant (K_{J}\frac{P_{t}G_{t}\sigma R_{J}^{2}}{G_{t}(\theta )R_{t}^{4}4\pi \gamma _{J}})

         自卫干扰条件下,千扰机安装在目标上,G_{t}(\theta )\equiv G_{t}R_{t}\equiv R_{J}

\frac{P_{t}G_{t}4\pi \gamma _{J} R_{J}^{2}}{P_{t}G_{t}\sigma }\geqslant K_{J}

        其有效干扰空间是在一个以 R_{t}为半径的球体之外的空间。

 R_{t}\geqslant (K_{J}\frac{P_{t}G_{t}\sigma}{P_{J}G_{J}4\pi \gamma _{J}})^{\frac{1}{2}}

3. 雷达侦查距离

        侦察作用距离是衡量雷达侦察系统对雷达探测能力的一个重要参数。在现代战争中,谁能够率先发现对方,谁就赢得了战场的主动权。从原则上讲,雷达侦察是单程工作,而雷达是双程工作(一次雷达),在作用距离上,雷达侦察掌握优势。但在信号处理上,雷达具有较多的先验知识可用,具有明显的信号处理优势。因此,一般在实际工作中保持侦察作用距离大于雷达作用距离是可能的,但有时也并非轻而易举。

3.1 简化侦查方程

        简化侦察方程是指不考虑传输损耗、大气衰减以及地面或海面反射等因素的影响而导出的侦察作用距离方程。假设侦察机和雷达的空间位置如下图所示

        雷达的发射功率为P_{r},天线的增益为G_{t},雷达与侦察机之间的距离为R,当雷达与侦察天线都以最大增益方向互指时,侦察接收天线收到的雷达信号功率为

P_{r}=\left [ \frac{P_{t}G_{t}A_{r}}{4\pi R^{2}} \right ]^{\frac{1}{2}}

        式中,侦查天线有效面积A_{r}与天线增益G_{r}、波长\lambda的关系为:

A_{r}=\frac{G_{r}\lambda ^{2}}{4\pi }

        将其代入:

P_{r}=\left [ \frac{P_{t}G_{t}G_{r}\lambda ^{2}}{(4\pi )^{2}P_{r\, min}} \right ]^{\frac{1}{2}}

3.2 修正侦查方程

修正侦察方程是指在考虑有关馈线和装置损耗条件下的侦察方程。其主要损耗如下:

        (1)从雷达发射机到雷达发射天线之间的馈线损耗L_{1}\approx 3.5dB;

        (2)雷达发射天线波束非矩形损失L_{2}\approx1.6\sim 2dB

        (3)侦察天线波束非短形损失L_{3}\approx1.6\sim 2dB;

        (4)侦察天线增益在宽频带内变化所引起的损失L_{4}\approx2\sim 3dB;

        (5)侦察天线与雷达信号极化失配损失L_{5}\approx3dB;

        (6)从侦察天线到接收机输入端的馈线损耗L_{6}\approx3dB

总损耗或损失:

L=\sum_{i=1}^{6}L_{i}\approx 14.7\sim 16.5dB

于是侦查方程修正为:

P_{r}=\left [ \frac{P_{t}G_{t}G_{r}\lambda ^{2}}{(4\pi )^{2}P_{r\, min}10^{0.1L}} \right ]^{\frac{1}{2}}

        雷达侦察系统的灵敏度P_{r\, min}是指满足侦察接收机对接收信号能量正常检测的条件下,在侦察接收机输入端的最小输入信号功率。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhichao_97

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值