MathBase 工程数学基础(第一讲-第五讲)

本文是作者Dargon关于工程数学基础的学习笔记,主要涵盖线性空间的基与维数、子空间、线性变化、零空间和值空间以及线性变化下的矩阵相似化简。讲解了复数域中线性空间的维数、过渡矩阵、子空间的零空间和列空间的概念,以及线性变换的矩阵表示和零空间、值空间的求解方法。
摘要由CSDN通过智能技术生成

关于工程数学基础的笔记

  • Author : Dargon
  • Note date: 2020/10/14
  • 学习视频来源 国防科技大学 MOOC

第二讲,线性空间的基与维数

  • 记录自己应该记到的一些知识笔记要点

1,对于复数域的情况:

  1. 当数域F 为实数域,线性空间 C 是二维的
  2. 当数域F 为复数域,线性空间 C 是一维的

进行简单证明:

  1. 线性空间 C 的基为: [ 1 , i = − 1 ] [1, i =\sqrt{-1}] [1,i=1 ] 对任意的实数x1,x2都有 若是 x 1 × 1 + x 2 × i = 0 x1 \times 1 + x2 \times i =0 x1×1+x2×i=0 也只有x1 =x2 =0 时才成立
    可以推导出,基 中两列元素为线性无关,线性空间里面的任意(for all)都能用 [ 1 , i = − 1 ] [1, i =\sqrt{-1}] [1,i=1 ] 来表示,则此时线性空间所对应的基为 [ 1 , i = − 1 ] [1, i =\sqrt{-1}] [1,i=1 ],也即是C
    为二维空间
  2. 当数域F 为复数域,则设基为[1],对于任意的 [ a + b i ] × 1 = 0 [a + bi] \times 1= 0 [a+bi]×1=0,则[1] 线性无关为 线性空间C 的一个基,C是一维空间的。

2,transition matrix

  1. 同一向量在不同基下的坐标是不同的
    [ β 1 β 2 ⋯ β n ] = α 1 α 2 ⋯ α n × ∣ P 1 1 P 1 2 ⋯ P 1 n P 2 1 P 2 2 ⋯ P 2 n ⋮ ⋮ ⋱ ⋮ P n 1 P n 2 ⋯ P n n ∣ \begin{bmatrix} \beta_1 \beta_2 \cdots \beta_n \end{bmatrix}= { \alpha_1 \alpha_2 \cdots \alpha_n } \times \begin{vmatrix} P_11 & P_12 & \cdots & P_1n \\ P_21 & P_22 & \cdots & P_2n \\ \vdots & \vdots & \ddots & \vdots \\ P_n1 & P_n2 & \cdots & P_nn \end{vmatrix} [β1β2βn]=α1α2αn×P11P21Pn1P12P22Pn2P1nP2nPnn
    其中对于矩阵 P 的每一列都对应于 β 1 \beta_1 β1 在基 α \alpha α 下的坐标,作为参数就可以直接理解为坐标(其中每一列都是一一对应的和 β \beta β
    对于矩阵 P的要求:
    (1) P是满秩的;
    (2) p是 α \alpha α β \beta β的转置矩阵 transition matrix
    则P(inverse)是 β \beta β α \alpha α 的转置矩阵 α = β × P − 1 \alpha = \beta \times P ^ \mathrm{ -1 } α=β×P1 β \beta β α \alpha α 分别是对应的两组线性空间里面的基
    (3) 若 α = β α × x \alpha =\beta_\alpha \times x α=βα×x can deduce α = β B P − 1 × x \alpha =\beta_B P^-1 \times x α=βBP1×x they point that is correspond respectively.

第三讲,子空间

1,零空间和列空间

  1. A是给定的m行n列的实矩阵 记
    N ( A ) = { x ∈ R n ∣ A x = 0 } N(A) =\{x\in\R^n|Ax =0\} N(A)={xRnAx=0}
    R ( A ) = { A x ∣ x ∈ R n } R(A) =\{Ax | x\in\R^n\} R(A)={AxxRn}
    可以看出N(A)是R(A)的一个特殊群体,当Ax =0的时候
    对于N(A)为 R n R^n Rn的一个子空间,称为A的零空间
    对于R(A)为 R m R^m Rm的一个子空间,称为A的列空间
    列空间的解释,A是一个(m 行 n列 )乘以 x (n 行 1列)=结果 (m 行 1列)所对应的是 R m R^m Rm空间的
    d i m [ N ( A ) ] = n − r ( A ) dim[N(A)] =n -r(A) dim[N(A)]=nr(A)
    d i m [ R ( A ) ] = R a n k ( A ) = r ( A ) dim[ R(A)] =Rank(A) =r(A) dim[R(A)]=Rank(A)=r(A)

2,关于span 张成空间

  • s p a n { α 1 α 2 ⋯ α r } = { α = ∑ i = 1 r k i α i ∣ k 1 k 2 ⋯ k r ∈ F } \color{red}span\{ \alpha_1 \alpha_2 \cdots \alpha_r \} =\{ \alpha =\displaystyle\sum_{i=1}^{r}{k_i}{\alpha_i}|{k_1} {k_2} \cdots {k_r} \in F \} span{α1α2αr}={α=i=1rkiαik1k2krF} 则span 一大串就是 v 的一个子空间,是由 { α 1 α 2 ⋯ α r } \{ \alpha_1 \alpha_2 \cdots \alpha_r \} {α1α2αr}张成的子空间

  • 判断自空间是否是在该空间里面,1. 将子空间进行相加,看是否还在总的空间里面 2. 用K 值乘以子空间,看是否还在总的空间里面
    来了 描述一个线性空间,直接去找线性空间的基,然后将其 span 张成整个 的线性空间,说白了, 就相当于一个线性空间的代表

  1. { α 1 α 2 ⋯ α r } \{ \alpha_1 \alpha_2 \cdots \alpha_r \} {α1α2αr}是子空间W的基,则
    W = s p a n { α 1 α 2 ⋯ α r } W =span\{ \alpha_1 \alpha_2 \cdots \alpha_r \} W=span{α1α2αr}
  2. 若A 是一个m 行n 列的矩阵 ,其列空间 R ( A ) = { A x ∣ x ∈ R n } = s p a n { A 1 A 2 ⋯ A n } R(A) =\{ Ax |x \in R_n \} = span\{ A_1 A_2 \cdots A_n \} R(A)={AxxRn}=span{A1A2An}
    整体就相当于一个列的极大线性无关组(秩)

3,关于维数定理

  • d i m ( W 1 + W 2 ) + d i m ( W 1 ∩ W 2 ) = d i m ( W 1 ) + d i m ( W 2 ) dim(W_1 +W_2) + dim(W_1 \cap W_2) =dim(W_1) +dim(W_2) dim(W1+W2)+dim(W1W2)=dim(W1)+dim(W2)
    d i m ( W 1 ∩ W 2 ) = r dim(W_1 \cap W_2) =r dim(W1W2)=r
    d i m ( W 1 ) = m dim(W_1) =m dim(W1)=m
    d i m ( W 2 ) = k dim(W_2) =k dim(W2)=k
    由基扩张定理可得,由于 [ α 1 α 2 ⋯ α r ] [\alpha_1 \alpha_2 \cdots \alpha_r] [α1α2αr] 线性无关,则可以span 成W1 的基: [ α 1 α 2 ⋯ α r β 1 ⋯ β m − r ] [\alpha_1 \alpha_2 \cdots \alpha_r \beta_{1} \cdots \beta_{m-r}] [α1α2αrβ1βmr]
    相应的 [ α 1 α 2 ⋯ α r ] [\alpha_1 \alpha_2 \cdots \alpha_r] [α1α2αr] 线性无关,则可以span 成W2 的基: [ α 1 α 2 ⋯ α r ζ 1 ⋯ ζ k − r ] [\alpha_1 \alpha_2 \cdots \alpha_r \zeta_{1} \cdots \zeta_{k-r}] [α1α2αrζ1ζkr]

    对于
    d i m [ W 1 + W 2 ] = s p a n [ α 1 α 2 ⋯ α r β 1 ⋯ β m − r ζ 1 ⋯ ζ k − r ] \color{red}dim[W1 +W2] =span[\alpha_1 \alpha_2 \cdots \alpha_r \quad \beta_{1} \cdots \beta_{m-r} \quad \zeta_{1} \cdots \zeta_{k-r}] dim[W1+W2]=span[α1α2αrβ1βmrζ1ζkr]
    证明此时的W1 +W2向量线性无关(也就代表这个空间的一组基),且其总共有(m + k -r)个向量,可以利用线性无关的定义去证明
    分别进行带入到定理中,可以得出等号左边维数 m + k − r + r = m + k m +k -r +r =m +k m+kr+r=m+k
    维数定理证明结束!!

  • 基扩张定理
    就是简单的利用空间中的一组不超过独立向量的个数 的向量,可进行扩张
    举例如一个n维的空间,对应的一组基的个数应该达到n个(并且要是n个独立向量,线性无关的),不然会覆盖不了整个n维的空间
    扩张定理就是,一个不到n个的一组向量,将其扩张成n维的,达到全面覆盖。

  • 直和概念
    W 1 ⊕ W 2 W_1 \oplus W_2 W1W2表示唯一 only
    只能唯一地分解成W_1的一个向量 + W_2的一个向量。
    resemble 概念,在集合中两个没有交集的集合 U
    A ∩ B ⊂ 0 \color{blue}A \cap B \subset 0 AB0,则有 A ∪ B ⊂ 0 \color{blue}A \cup B \subset 0 AB0类似于“直和”的概念

    直和的等价条件:

    1. W 1 + W 2 = W 1 ⊕ W 2 W_1 +W_2 =W_1 \oplus W_2 W1+W2=W1W2
    2. W 1 ∩ W 2 = { 0 } W_1 \cap W_2 =\{ 0 \} W1W2={0}
    3. d i m ( W 1 + W 2 ) = d i m ( W 1 ) + d i m ( W 2 ) dim(W_1 +W_2) =dim(W_1) +dim(W_2) dim(W1+W2)=dim(W1)+dim(W2)
    4. 0 = α 1 + α 2 α 1 ∈ W 1 α 2 ∈ W 2 0 =\alpha_1 + \alpha_2 \quad \alpha_1 \in W_1 \quad \alpha_2 \in W_2 0=α1+α2α1W1α2W2

第四讲,线性变化

1,线性变换的矩阵表示

  • 设T是 V n → V m V^n \to V^m VnVm的线性变换,且 B α = { α 1 , α 2 , ⋯   , α n } \Beta_{\alpha} =\{ \alpha_1, \alpha_2, \cdots, \alpha_n \} Bα={α1,α2,,αn} B β = { β 1 , β 2 , ⋯   , β m } \Beta_{\beta} =\{ \beta_1, \beta_2, \cdots, \beta_m \} Bβ={β1,β2,,βm} 分别是 V n V m V^n \quad V^m VnVm的一组基
    由于 T α i ∈ V m i = 1 , 2 , ⋯   , n T\alpha_i \in V^m \quad i =1, 2, \cdots, n TαiVmi=1,2,,n
    T α i T\alpha_i Tαi在基 B β = { β 1 , β 2 , ⋯   , β m } \Beta_{\beta} =\{ \beta_1, \beta_2, \cdots, \beta_m \} Bβ={β1,β2,,βm}下的坐标分别为
    A i = [ a 1 i ⋮ a m i ] , i = 1 , 2 , ⋯   , n A_i = \begin{bmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{bmatrix} \quad, i =1, 2, \cdots ,n Ai=a1iamii=1,2,,n
    总的结论就是
    T B α = { T α 1 T α 2 ⋯ T α n } = { B β A 1 B β A 2 ⋯ B β A n } = B β A T\Beta_\alpha =\{ T\alpha_1 T\alpha_2 \cdots T\alpha_n \} = \{ \Beta_{\beta}A_1 \Beta_{\beta}A_2 \cdots \Beta_{\beta}A_n \} =\Beta_{\beta}A TBα={Tα1Tα2Tαn}={BβA1BβA2BβAn}=BβA
    里面的矩阵A 就是 T α i T\alpha_i Tαi在基 B β \Beta_\beta Bβ下的坐标

2,线性变换 T 的零空间和值空间

  • 定义
    设T是 V n → V m V^n \to V^m VnVm的线性变换,记作 N ( T ) = { ξ ⊂ V n ∣ T ξ = 0 } N(T) =\{ \xi \subset V^n | T\xi =0 \} N(T)={ξVnTξ=0}
    意思就是:把 V n V^n Vn 的部分向量拿出来,相当于在T 的作用下均满足 T ξ = 0 T\xi =0 Tξ=0
    零空间(也称为 核)为 V n V^n Vn的零空间
    R ( T ) = = { T ξ ⊂ V m ∣ ξ ⊂ V n } R(T) ==\{ T\xi \subset V^m | \xi \subset V^n \} R(T)=={TξVmξVn} 称为值空间(也称值域)为 V m V_m Vm的值空间

    resemble
    若把 T 看成是A, ξ \xi ξ 看成是向量x
    对应的就是N(A)(零空间)和R(A)(列空间)
    注意 :千万不要把R(A)错看成行空间,列空间是属于Rm的一个子空间,而行空间是属于Rn的一个子空间

  • 关于一些推论

  1. N U L L ( T ) = d i m [ N ( A ) ] = n − r ( A ) NULL(T) =dim[N(A)] =n -r(A) NULL(T)=dim[N(A)]=nr(A)
  2. R a n k ( T ) = d i m [ R ( A ) ] = r ( A ) Rank(T) =dim[R(A)] =r(A) Rank(T)=dim[R(A)]=r(A)
    T 的关系和A 的关系是一一对应的
  • 关于求解
    求T 在基 β \beta β 下的矩阵,直接计算T乘上 β 1 β 2 β 3 \beta_1 \beta_2 \beta_3 β1β2β3之后的都写成关于 B \Beta B 和列矩阵相乘的形式,所有的系数矩阵合起来,就是所需要的求的A矩阵
    如何进行求解N(T)的基
    1. 先求T在基偶 [ β α β β ] [\beta_\alpha \quad \beta_\beta] [βαββ]下的矩阵A
    2. 求令Ax =0 求出基础解系
    3. 用基础解系x 分别对应乘以 $\beta_\alpha,由此可以得到N(T)的基
      如何求R(T)的基
      1. 求出 T α 1 T α 2 ⋯ T α n T\alpha_1 T\alpha_2 \cdots T\alpha_n Tα1Tα2Tαn
      2. 其里面的最大线性无关组就是R(T)的一个基
  • 例题求解过程
    在这里插入图片描述
    在这里插入图片描述

第五讲,线性变化下的矩阵的相似化简

  • 线性变化在不同基偶下的矩阵是等价的(进行证明)
    设 T 是 V n → V m V^n\to V^m VnVm的线性变换
    B α , B α 1 是 V n 的 两 个 基 , B β , B β 1 是 V n 的 两 个 基 \Beta_\alpha , \Beta_\alpha1 是V^n 的两个基,\Beta_\beta , \Beta_\beta1 是V^n 的两个基 Bα,Bα1VnBβ,Bβ1Vn
    T在基偶 [ B α , B β ] [\Beta_\alpha, \Beta_\beta] [Bα,Bβ]下的矩阵为A,则
    T B α = B β A (5.1) T\Beta_\alpha = \Beta_\beta A \tag{5.1} TBα=BβA(5.1)

    T在基偶 [ B α 1 , B β 1 ] [\Beta_\alpha1, \Beta_\beta1] [Bα1,Bβ1]下的矩阵为Q,则
    T B α 1 = B β 1 B (5.2) T\Beta_\alpha1 = \Beta_\beta1B \tag{5.2} TBα1=Bβ1B(5.2)

    注意A和B 的含义 每一列都代表这组基向量 B α \Beta_\alpha Bα,在线性变换T 的作用之后的像 T α i T\alpha_i Tαi 在基 B β \Beta_\beta Bβ下的坐标Ai

    B α 到 B α 1 \Beta_\alpha 到 \Beta_\alpha1 BαBα1的过渡矩阵为P B α 1 = B α P (5.3) \Beta_\alpha1 =\Beta_\alpha P \tag{5.3} Bα1=BαP(5.3)
    B β 到 B β 1 \Beta_\beta 到 \Beta_\beta1 BβBβ1的过渡矩阵为P B β 1 = B β Q (5.4) \Beta_\beta1 =\Beta_\beta Q \tag{5.4} Bβ1=BβQ(5.4)

则有1和3公式 推导
T B α 1 = T ( β α P ) = T ( B α ) P = ( B β A ) P = B β ( A P ) (5.5) T \Beta_\alpha1 = T(\beta_\alpha P) =T(\Beta_\alpha)P =(\Beta_\beta A)P =\Beta_\beta(AP) \tag{5.5} TBα1=T(βαP)=T(Bα)P=(BβA)P=Bβ(AP)(5.5)
则有2和4公式 推导
T B α 1 = B β 1 B = B β Q B = B β ( Q B ) (5.6) T \Beta_\alpha1 = \Beta_\beta1B =\Beta_\beta QB =\Beta_\beta(QB) \tag{5.6} TBα1=Bβ1B=BβQB=Bβ(QB)(5.6)
据此可以推理出
A P = Q B AP =QB AP=QB A 与B矩阵是等价的 可以退出
A = P − 1 Q B (5.7) A =P^{-1}QB \tag{5.7} A=P1QB(5.7)

  • 求不同基偶下的矩阵,找一个基使得T在此基下面矩阵是对角阵
    分析

    1. 先任取一个基B 求出T在该基下面的矩阵A T β = β A T\beta =\beta A Tβ=βA
    2. 将矩阵A 相似化简,求特征,求特征向量,组成P 使得 B = p − 1 A P B =p^{-1}AP B=p1AP
    3. T 在基 β p \beta_p βp下的矩阵是 B = P − 1 A P B =P^{-1}AP B=P1AP
      T B p = B p P − 1 A P = B p B T\Beta_p =\Beta_p P^{-1}AP =\Beta_p B TBp=BpP1AP=BpB
      注:我们将基从 β → B p \beta \to \Beta_p βBp就转换了矩阵从A->B 的化简,P也就是对应的转换矩阵 转换过来的新的一组基,也就是原来的基和P矩阵相乘即可得到,P就是 线性变换在原来的基下面的矩阵A所对应的特征向量组成的矩阵。
  • 一道例题清晰的解释此过程
    习题5.1上
    习题5.1下
    前5讲先记录到此,后面进入内积空间!!!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值