【cellrank】3-全流程总结

本文主要总结了CellRank库的核心内容,重点介绍了Kernels和Estimators的低级API用法,建议结合Kernels and estimators教学文档学习。另外,提到了将Seurat转换为AnnData的教程,但由于CellRank整合了scVelo,后续部分的学习可能不再必要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

cellrank最为精髓的教学文档是Kernels and estimators — CellRank master documentation,讲解了low API,即kernal和estimator的用法。不建议再看high API basic tutorial了。

应当加上下面这个教程,主要是学习seurat变为annadata。cellrank包装了scVelo,所以这个教程后面的东西意义不大了。

nam Morabito | RNA velocity analysis with scVelo

 总的来说,kernal有基于剪切mRNA的Velocity Kernel、基于转录组相似性的Connectivity Kernel、基于cytotrace干性评分的kernel。第一个kernel是最本义的RNA速率,后两个是beyond RNA velocity用法。

最为有趣的是,我们可以创建混合kernal,由上述kernal组合而成,给权重。这对于beyond RNA velocity的用法来说尤为重要,因为至少可以提供一定的方向性,而不会沦落成和monocle2这样的算法一样。

最后感想:python真的快,scanpy ecosystem真的好用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值