时不变线性系统和时变线性系统方程的对角化

本文探讨了时不变和时变线性系统的方程对角化过程。对于时不变线性系统,需要A有n个线性无关的特征向量才能对角化;而对于时变系统,只要有连续的矩阵分量,总能找到可逆矩阵实现对角化,即使得原方程变为对角形式。时变线性系统的对角化条件相对较宽松。
摘要由CSDN通过智能技术生成

【时不变线性系统】

时不变线性系统的方程为:  \dot{x}=Ax+Bu , 其中A\in R^{n\times n}B\in R^{n\times r}均为常数矩阵。

由代数知识可以知道,如果A有n个线性无关的特征向量,那么可以把A对角化。这时存在非奇异矩阵P使得:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值