[yolov11改进系列]使用轻量级骨干网络MobileNetV4替换backbone的python源码+训练源码+改进流程+改进原理

【MobileNetV4介绍】

MobileNetV4是专为移动设备设计的轻量化神经网络架构,其核心原理与显著优点如下:

原理介绍
MobileNetV4通过三大核心创新实现高效性能:

  1. 通用倒瓶颈(UIB)模块:该模块融合了倒瓶颈(IB)、ConvNext、前馈网络(FFN)及ExtraDW深度可分离卷积变体,通过灵活的空间和通道混合策略,在扩展感受野的同时保持计算效率。UIB模块可适配不同硬件需求,支持模型在多平台上的高效部署。
  2. Mobile MQA注意力机制:针对移动加速器优化,通过下采样关键(Key)和值(Value)矩阵并保留高分辨率查询(Query),在减少计算开销的同时维持注意力精度。实验表明,该机制可使推理速度提升39%。
  3. 两阶段神经架构搜索(NAS):通过粗粒度搜索确定滤波器尺寸,再结合细粒度搜索优化UIB模块的深度卷积层配置,显著提升搜索效率并降低NAS奖励测量噪声。该方法支持生成更大规模、更适应硬件特性的模型。

优点

  1. 跨硬件帕累托最优性能:基于Roofline模型分析,MobileNetV4在CPU、DSP、GPU及专用加速器(如苹果神经引擎、Pixel EdgeTPU)上均实现接近最优的精度与效率平衡,避免传统模型在不同硬件上的性能断层。
  2. 推理速度与精度双提升:MNv4-Hybrid-Large模型在ImageNet-1K上达到87%的Top-1准确率,同时在Pixel 8 EdgeTPU上仅需3.8ms完成推理,较前代模型MACs减少39倍而精度损失仅0.5%。
  3. 硬件感知优化:通过两阶段NAS方法分离粗粒度与细粒度搜索,结合离线蒸馏数据集减少噪声,生成针对不同硬件特性(如计算瓶颈/内存带宽瓶颈)的定制化模型,实现从低脊点硬件(如CPU)到高脊点硬件(如GPU/EdgeTPU)的普适高效性。

MobileNetV4凭借其模块化设计、硬件感知优化及蒸馏技术,在移动端实现了精度与效率的双重突破,为实时性要求高的应用场景提供了理想解决方案。

【yolov11框架介绍】

2024 年 9 月 30 日,Ultralytics 在其活动 YOLOVision 中正式发布了 YOLOv11。YOLOv11 是 YOLO 的最新版本,由美国和西班牙的 Ultralytics 团队开发。YOLO 是一种用于基于图像的人工智能的计算机模

Ultralytics YOLO11 概述

YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。

Key Features 主要特点

  • 增强的特征提取:YOLO11采用改进的主干和颈部架构,增强了特征提取能力,以实现更精确的目标检测和复杂任务性能。
  • 针对效率和速度进行优化:YOLO11 引入了精致的架构设计和优化的训练管道,提供更快的处理速度并保持准确性和性能之间的最佳平衡。
  • 使用更少的参数获得更高的精度:随着模型设计的进步,YOLO11m 在 COCO 数据集上实现了更高的平均精度(mAP),同时使用的参数比 YOLOv8m 少 22%,从而在不影响精度的情况下提高计算效率。
  • 跨环境适应性:YOLO11可以无缝部署在各种环境中,包括边缘设备、云平台以及支持NVIDIA GPU的系统,确保最大的灵活性。
  • 支持的任务范围广泛:无论是对象检测、实例分割、图像分类、姿态估计还是定向对象检测 (OBB),YOLO11 旨在应对各种计算机视觉挑战。

与之前的版本相比,Ultralytics YOLO11 有哪些关键改进?

Ultralytics YOLO11 与其前身相比引入了多项重大进步。主要改进包括:

  • 增强的特征提取:YOLO11采用改进的主干和颈部架构,增强了特征提取能力,以实现更精确的目标检测。
  • 优化的效率和速度:精细的架构设计和优化的训练管道可提供更快的处理速度,同时保持准确性和性能之间的平衡。
  • 使用更少的参数获得更高的精度:YOLO11m 在 COCO 数据集上实现了更高的平均精度(mAP),参数比 YOLOv8m 少 22%,从而在不影响精度的情况下提高计算效率。
  • 跨环境适应性:YOLO11可以跨各种环境部署,包括边缘设备、云平台和支持NVIDIA GPU的系统。
  • 支持的任务范围广泛:YOLO11 支持多种计算机视觉任务,例如对象检测、实例分割、图像分类、姿态估计和定向对象检测 (OBB)

【测试环境】

windows10 x64

ultralytics==8.3.0

torch==2.3.1

【改进流程】

1. 新增MoileNetV4.py实现骨干网络(代码太多,核心模块源码请参考改进步骤.docx)2. 文件修改步骤

修改tasks.py文件

创建模型配置文件

yolo11-MobileNetV4.yaml内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 2 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# 支持版本有__all__ = ['MobileNetV4ConvLarge', 'MobileNetV4ConvSmall', 'MobileNetV4ConvMedium', 'MobileNetV4HybridMedium', 'MobileNetV4HybridLarge'] 5
# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, MobileNetV4ConvSmall, [0.50]] # 0-4 P1/2 这里是四层
  # 上面的参数0.75支持大家自由根据v11的 0.25 0.50 0.75 1.00 1.5 进行放缩我只尝试过这几个如果你设置一些比较特殊的数字可能会报错.
  # 所以本文有至少 5 x 5 = 25种组合方式.
  - [-1, 1, SPPF, [1024, 5]] # 5
  - [-1, 2, C2PSA, [1024]] # 6

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 3], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 9

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 2], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 12 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 9], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 15 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 6], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 18 (P5/32-large)

  - [[12, 15, 18], 1, Detect, [nc]] # Detect(P3, P4, P5)
3. 验证集成

使用新建的yaml配置文件启动训练任务:

from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('yolo11-MobileNetV4.yaml.yaml')  # build from YAML and transfer weights
        # Train the model
    results = model.train(data='coco128.yaml',epochs=100, imgsz=640, batch=8, device=0, workers=1, save=True,resume=False)

成功集成后,训练日志中将显示MobileNetV4模块的初始化信息,表明已正确加载到模型中。

【训练说明】

第一步:首先安装好yolov11必要模块,可以参考yolov11框架安装流程,然后卸载官方版本pip uninstall ultralytics,最后安装改进的源码pip install .
第二步:将自己数据集按照dataset文件夹摆放,要求文件夹名字都不要改变
第三步:打开train.py修改必要的参数,最后执行python train.py即可训练

【提供文件】

├── [官方源码]ultralytics-8.3.0.zip
├── train/
│   ├── coco128.yaml
│   ├── dataset/
│   │   ├── train/
│   │   │   ├── images/
│   │   │   │   ├── firc_pic_1.jpg
│   │   │   │   ├── firc_pic_10.jpg
│   │   │   │   ├── firc_pic_11.jpg
│   │   │   │   ├── firc_pic_12.jpg
│   │   │   │   ├── firc_pic_13.jpg
│   │   │   ├── labels/
│   │   │   │   ├── classes.txt
│   │   │   │   ├── firc_pic_1.txt
│   │   │   │   ├── firc_pic_10.txt
│   │   │   │   ├── firc_pic_11.txt
│   │   │   │   ├── firc_pic_12.txt
│   │   │   │   ├── firc_pic_13.txt
│   │   │   └── labels.cache
│   │   └── val/
│   │       ├── images/
│   │       │   ├── firc_pic_100.jpg
│   │       │   ├── firc_pic_81.jpg
│   │       │   ├── firc_pic_82.jpg
│   │       │   ├── firc_pic_83.jpg
│   │       │   ├── firc_pic_84.jpg
│   │       ├── labels/
│   │       │   ├── firc_pic_100.txt
│   │       │   ├── firc_pic_81.txt
│   │       │   ├── firc_pic_82.txt
│   │       │   ├── firc_pic_83.txt
│   │       │   ├── firc_pic_84.txt

│   │       └── labels.cache
│   ├── train.py
│   ├── yolo11-MobileNetV4.yaml
│   └── 训练说明.txt
├── 【改进源码】ultralytics-8.3.0.zip
├── 改进原理.docx
└── 改进流程.docx

 【常见问题汇总】
问:为什么我训练的模型epoch显示的map都是0或者map精度很低?
回答:由于源码改进过,因此不能直接从官方模型微调,而是从头训练,这样学习特征能力会很弱,需要训练很多epoch才能出现效果。此外由于改进的源码框架并不一定能够保证会超过官方精度,而且也有可能会存在远远不如官方效果,甚至精度会很低。这说明改进的框架并不能取得很好效果。所以说对于框架改进只是提供一种可行方案,至于改进后能不能取得很好map还需要结合实际训练情况确认,当然也不排除数据集存在问题,比如数据集比较单一,样本分布不均衡,泛化场景少,标注框不太贴合标注质量差,检测目标很小等等原因
【重要说明】
我们只提供改进框架一种方案,并不保证能够取得很好训练精度,甚至超过官方模型精度。因为改进框架,实际是一种比较复杂流程,包括框架原理可行性,训练数据集是否合适,训练需要反正验证以及同类框架训练结果参数比较,这个是十分复杂且漫长的过程。

### MobileNet V4 架构及其改进 MobileNet系列模型旨在提供高效的卷积神经网络设计,特别适用于移动设备和其他资源受限环境。然而,在提供的参考资料中并未提及有关MobileNet V4的具体细节[^1]。 尽管如此,基于MobileNet家族的发展趋势以及最新研究进展,可以推测MobileNet V4可能引入了一些重要的架构变化和技术革新: #### 1. 更加优化的结构单元 为了进一步提高效率并减少参数数量,新版本可能会采用更先进的可分离卷积形式或其他轻量化组件来替代传统的标准卷积操作。这有助于降低计算成本而不显著牺牲准确性。 #### 2. 新型正则化策略的应用 考虑到Batch Normalization对于小批量训练存在的局限性,未来版本或许会探索其他类型的标准化方法如Filter Response Normalization (FRN)[^4] 或者Cross-Iteration Batch Normalization (CBN),从而更好地支持高效的小批次甚至单样本推理过程。 #### 3. 增强的数据增强手段 借鉴YOLOv4中的创新实践,比如Mosaic多图像混合技术和Self-adversarial Training (SAT)[^3],这些技术能够有效增加数据多样性,帮助模型学习到更加鲁棒和泛化的特征表达能力。 #### 4. 集成Neck模块的设计理念 随着neck部分成为现代检测框架不可或缺的一部分,预计MobileNet V4也会融入类似的中间层结构用于融合来自不同层次的信息流,进而改善整体表现力[^5]。 需要注意的是上述预测并非官方发布的内容,具体实现还需等待正式文档公布。目前关于MobileNet V4最权威的消息源应该是Google Research团队发布的论文或开源项目页面。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FL1623863129

你的打赏是我写文章最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值