矩阵-齐次矩阵

本文探讨了正交矩阵的性质,指出正交矩阵在变换运算中无需求逆,可以直接作为逆矩阵使用。同时,介绍了如何将3X3矩阵扩展为4X4的齐次矩阵,用于表示线性变换和平移操作。
摘要由CSDN通过智能技术生成

1.正交矩阵 一个矩阵为正交矩阵,就不需要求逆矩阵,直接使用正交矩阵作为逆矩阵进行变换运算。施密特正交化。

2.3X3矩阵扩展为4X4齐次矩阵 最后一行表示矩阵的平移 线性变换+平移

class Vector3;

class Matrix4X3 {
public:
	float m11, m12, m13;
	float m21, m22, m23;
	float m31, m32, m33;
	float tx, ty, tz;

	void SetRotate(int x, float theta);
	void SetScale(const Vector3 &v);
	void SetProject(const Vector3 &v);
	void SetReflect(int x, float k);
	void SetReflect( Vector3 &v);
	void SetShear(int x,float s,float t);

	void ZeroTranslation();
	void SetTranslation(const Vector3 &v);
	void SetupTranslation(const Vector3 &v);
};

Matrix4X3 operator*(const Matrix4X3 &m1, const Matrix4X3 &m2);

Vector3 operator*(const Vector3 &v, const Matrix4X3 &m);

float Determinant(const Matrix4X3 &m);

Matrix4X3 Inverse(const Matrix4X3 &m);

Vector3 GetTranslation(const Matrix4X3 &m);
#include "pch.h"
#include "Matrix4X3.h"
#include "Vector3.h"
#include
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值