基于二维图slam的主动探测的边界检测和可达性分析
介绍
该文的工作:
1、基于Cartographer设计边界检测算法,其中的改进为没有评估所有的子图,而是只选择那些经过图优化后位姿变化大于一定阈值的子图,减少了计算量。
2、分析并改进边界的可达性,提出一种聚类方法,将密集的边界聚类作为导航点来获取可达的导航点,从而避免了导航点不可达可能导致的路径规划无效问题。
准备
A.定义
占据概率标记:每个栅格单元的先验概率为0.5
则当概率=0.5,栅格状态未知;
概率>0.5,栅格为占据;
概率<0.5,栅格为自由。
边界:与至少一个未知网格相邻的所有自由网格的集合。如图2(a)所示,红点为WFD在子地图上检测到的局部边界。
子图:由几个连续的激光扫描组成的小型占用网格地图,每个子图中包含的激光扫描位姿和边界点存储在相对于子图的局部坐标系中。【如图2(a)所示,展示了由几个连续的激光扫描组成的子图。】
全局图:一种融合占用网格图,根据图优化得到的相对位姿将所有子图连接起来,由于每次优化后子映射之间的相对位姿都会发生变化,因此每次优化后都需要重新生成全局映射。【查询两个子地图的所有局部边界点后,得到全局地图的全局边界点,如图2(c )所示】
刺入查询:一项用来评估当地边界是否属于全局边界的操作,当且仅当局部边界点在所有几何共对子图中属于边界或未知状态时,将其视为全局边界点。如图2(b)所示,展示了如何进行刺入查询。【根据这两个子图在世界坐标系中的位姿,可以计