2021/12/10 Ubuntu18.04 安装 PCL补充记录

本文补充了Ubuntu18.04安装PCL过程中遇到的libflann、libvtk和pcl_viewer的错误及解决方法。对于libflann库,由于版本更新,需安装libflann1.9和libflann-dev;libvtk安装时需根据依赖关系手动指定版本;最后,若pcl_viewer命令找不到,通过sudo apt install pcl-tools即可解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


说明:这篇博客是基于上次博客的补充,具体步骤还是参考如下图所示的博文。
🔗: Ubuntu18.04 安装 PCL记录
在这里插入图片描述

关于 libflann1.8 libflann-dev报错

在这里插入图片描述

sudo apt-get install libflann1.8 libflann-dev

今天重试了下,这条指令会报错,因为版本已经更迭到1.9了哈~
所以改为

sudo apt-get install libflann1.9 libflann-dev

关于下载libvtk出错

我之前推荐的是智能安装aptitude,如果有小伙伴觉得对安装包版本改动太多不放心可以改成下面的方式(也是我之前说的解决方法1)(亲身测试成功了!)
报错提示:
下列软件包有未满足的依赖关系:
libvtk7-qt-dev : 依赖: libvtk7-de

<think>嗯,用户想在Ubuntu 18.04安装PCL 1.10。我需要整理一下之前的引用内容,看看有没有相关的步骤。首先,引用1和引用2提到了一些安装方法,但可能主要是针对特定版本的,可能不是1.10。不过用户特别指定了1.10,可能需要从源码编译。 引用3和4提到了从GitHub克隆源码,可能这里需要确认PCL的版本。比如,用户需要安装1.10的话,可能需要切换到对应的分支或者标签。比如,PCL的GitHub仓库可能有不同的分支,比如1.10版本对应的tag,比如pcl-1.10.0或者类似的。所以安装步骤可能包括下载源码,切换分支,然后编译安装。 接下来,用户的问题是关于安装指南,所以需要给出步骤。根据引用中的信息,安装步骤可能包括安装依赖项、下载源码、配置编译选项、编译和安装。比如,引用2提到了mkdir release,进入该目录,运行cmake,然后make和make install。但需要注意可能遇到的问题,比如CUDA编译问题,或者依赖项是否安装完整。 另外,用户可能需要安装一些依赖库,比如VTK、Eigen、Boost等,这些在引用中提到的步骤里可能需要手动安装。例如,引用2中提到了安装gcc和g++,所以可能需要先安装编译工具链。 还有,用户可能需要处理编译过程中出现的错误,比如某些依赖项缺失,或者cmake配置参数不正确。例如,引用2中的cmake命令里是否包含正确的参数,比如-DBUILD_GPU=ON或者其他选项是否需要调整。 可能还需要注意,安装完成后如何测试是否成功,比如运行测试程序,或者编译示例代码。引用1提到在pcl_test文件夹中测试,可能需要创建测试项目,编写CMakeLists.txt,并确保PCL库被正确链接。 所以总结下来,步骤应该是: 1. 安装依赖项,包括gcc、g++、cmake,以及PCL所需的第三方库。 2. 下载PCL 1.10的源码,可能需要通过git clone并checkout到对应的tag。 3. 配置cmake,设置正确的编译选项,比如安装路径、启用某些模块等。 4. 编译和安装,注意处理可能的编译错误,比如缺少依赖项或配置错误。 5. 测试安装是否成功,通过运行示例代码或自己编写测试程序。 此外,用户可能需要参考引用中的具体命令,例如从GitHub克隆仓库,进入release目录,运行cmake等步骤。同时,提醒用户注意网络问题,比如从GitHub下载慢的话可以使用码云镜像,如引用3提到的。 可能遇到的问题包括CUDA支持的问题,如果用户需要GPU加速的话,可能需要安装CUDA相关的依赖。还有,某些依赖库的版本是否兼容,比如Boost的版本是否符合PCL 1.10的要求。 所以,回答时需要分步骤详细说明,确保用户能够逐步操作,并在关键步骤给出提示,比如如何处理依赖项,如何切换源码版本,如何配置cmake参数等。同时,引用相关的引用内容作为参考,帮助用户定位问题。</think>### 在 Ubuntu 18.04安装 PCL 1.10 的步骤指南 #### 1. 安装系统依赖 首先安装编译工具链和基础依赖: ```bash sudo apt update sudo apt install -y gcc g++ cmake git build-essential sudo apt install -y libboost-all-dev libeigen3-dev libflann-dev libvtk6-dev libqhull-dev ``` #### 2. 下载 PCL 1.10 源码 从 GitHub 克隆仓库并切换到 `pcl-1.10.0` 标签: ```bash git clone https://github.com/PointCloudLibrary/pcl.git cd pcl git checkout tags/pcl-1.10.0 # 确保切换到对应版本 ``` 若 GitHub 下载较慢,可通过码云镜像加速[^3]。 #### 3. 配置编译选项 新建编译目录并运行 CMake: ```bash mkdir release && cd release cmake -DCMAKE_BUILD_TYPE=Release \ -DCMAKE_INSTALL_PREFIX=/usr \ -DBUILD_GPU=OFF \ # 若无需 GPU 支持可关闭 -DBUILD_examples=ON \ # 启用示例程序 -DBUILD_tools=ON .. # 启用工具包 ``` 注意:若需 CUDA 支持,需提前安装 CUDA 驱动并设置 `-DBUILD_GPU=ON`,可能需解决依赖冲突[^2]。 #### 4. 编译与安装 执行编译并安装(耗时较长): ```bash make -j$(nproc) # 使用多线程加速编译 sudo make install ``` #### 5. 验证安装 创建测试项目验证 PCL 是否正常工作: ```bash mkdir pcl_test && cd pcl_test # 编写示例代码(如点云滤波)并配置 CMakeLists.txt # 编译运行,确保无链接错误[^1] ``` #### 关键问题解决 - **依赖缺失**:若编译报错,检查是否遗漏 `libproj-dev`、`libopenni-dev` 等依赖- **VTK 版本冲突**:Ubuntu 18.04 默认 VTK 6.3,若需更高版本需手动编译[^4]。 - **CUDA 兼容性**:PCL 1.10 对 CUDA 版本有要求,建议使用 CUDA 10.x[^2]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值