Monocle3

本文介绍了Monocle3在单细胞转录组分析中的主要功能,包括细胞聚类、拟时序分析和差异基因表达分析。详细讲解了如何从10X数据中创建cell_data_set对象,以及数据预处理步骤,如标准化和降维。通过Louvain社区检测进行细胞聚类,并使用learn graph识别细胞发展路径。此外,还讨论了如何指定轨迹分析的起点以及进行3D拟时序分析。最后,提到了Monocle3的差异基因分析功能,如Moran's I的空间自相关分析,用于研究基因在空间分布中的相关性。
摘要由CSDN通过智能技术生成

一、monocle3介绍

monocle3可以执行的3个主要的功能

对细胞进行聚类、分类和计数。Monocle 3 可识别新的(可能是罕见的)亚型细胞

构建单细胞轨迹。通过拟时序分析帮助大家解析生物体发育、疾病等过程中细胞发生的变化。这是最主要的功能。

差异表达分析。Monocle 3 包括一个复杂但易于使用的差分表达系统,可以表征新的细胞类型和状态始于与其他更好理解的细胞进行比较。

 主要流程

1.读取数据,创建cell_data_set对象。

2.数据预处理:标准化,去除批次效应

3.降维

4.聚类

5.进行差异基因表达分析

6.拟时序分析

二、关于不同数据的读取办法

(一)Bioconductor的ExpressionSet对象:

monocle3读取的数据要包含3个部分:

  • expression_matrix:表达式值的数字矩阵,其中行是gene,列是cell
  • cell_metadata:数据框,其中行是cell,列是细胞属性(如细胞类型、培养条件、获取日期等)
  • gene_metadata :数据框,其中行是特征(例如基因),列是基因属性,例如生物型,GC含量等。

输入前应该确保几个“等式”

  •  expression_matrix 列数= cell_metadata 行数 并且两者要相匹配
  •  expression_matrix 行数= gene_metadata 列数 并且两者要相匹配
  •  gene_metadata的其中一列应为“gene_short_name”,表示每个基因的基因符号或简要名称

创建对象示例 

# Load the data
expression_matrix <- readRDS(url("https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/cao_l2_expression.rds"))
cell_metadata <- readRDS(url("https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/cao_l2_colData.rds"))
gene_annotation <- readRDS(url("https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/cao_l2_rowData.rds"))


# Make the CDS object
cds <- new_cell_data_set(expression_matrix,
                         cell_metadata = cell_metadata,
                         gene_metadata = gene_annotation)

(二)从 10X 输出生成cell_data_set

要找到正确的文件,必须提供包含未修改的Cell Ranger“outs”文件夹的文件夹的路径。文件结构应如下所示:10x_data/outs/filtered_feature_bc_matrix/,其中filtered_feature_bc_matrix包含 files features.tsv.gz、barcodes.tsv.gz 和 matrix.mtx.gz。(还可以处理Cell Ranger V2数据,其中“feature”被替换为“gene”,并且文件未被gz压缩。(这个读取起来很容易报错)

读取示例:注意使用函数是load_cellranger_data

# Provide the path to the Cell Ranger output.
cds <- load_cellranger_data("~/Downloads/10x_data")

或者如果有以下3个文件,也可直接读取:注意使用函数是load_mm_data

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值