统计量与无偏估计量

本篇笔记内容来源
数理统计学导论(原书第7版) 机械工业出版社


统计量

X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 表示随机变量 X X X 的样本,令 T = T ( X 1 , X 2 , ⋯   , X n ) T=T(X_1,X_2,\cdots,X_n) T=T(X1,X2,,Xn) 是样本的函数,则称 T T T 为统计量

(统计量也是随机变量)

样本均值 X ‾ = 1 n ∑ i = 1 n X i   样本方差 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 样本均值\overline{X}=\frac{1}{n}\sum^n_{i=1}X_i\ \ 样本方差S^2=\frac{1}{n-1}\sum^n_{i=1}(X_i-\overline{X})^2\\ 样本均值X=n1i=1nXi  样本方差S2=n11i=1n(XiX)2


无偏性

X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 表示随机变量 X X X 的样本, X X X 具有 pdf f ( x ; θ ) f(x;\theta) f(x;θ) .

T = T ( X 1 , X 2 , ⋯   , X n ) T=T(X_1,X_2,\cdots,X_n) T=T(X1,X2,,Xn) 是统计量.

如果 E ( T ) = θ E(T)=\theta E(T)=θ 我们称 T T T θ \theta θ 的无偏估计量.

(无偏性是点估计量的性质)

比如 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) 中均值 μ \mu μ 未知,就可以将其 pdf 写作 f ( x ; μ ) f(x;\mu) f(x;μ)

这时样本均值

X ‾ = 1 n ∑ i = 1 n X i \overline{X}=\frac{1}{n}\sum^n_{i=1}X_i X=n1i=1nXi

就是 μ \mu μ 的无偏估计量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值