RGB-D SLAM——匹配篇(一)

本文介绍了在Ubuntu上使用CMake+QtCreator搭建RGB-D SLAM环境的过程,包括通过QtCreator导入CMake工程,相机模型及公式推导,从图片生成点云,以及图像配准来估计两帧之间的位姿。重点讲解了图像配准的最小二乘优化和ICP算法的应用,以及关键点检测和描述子计算的方法。
摘要由CSDN通过智能技术生成

之前跑过高博的一起做RGB-D SLAM,趁着放假,也稍微整理一下,顺便理一下思路, 由于本人是在Ubuntu上跑的代码,所以用的工具和IDE是CMake+QtCreator,先稍微介绍下如果用QtCreate建立CMake工程,正确来说应该是如何导入CMake工程,然后再进行RGB-D SLAM的搭建。

1.通过QtCreator导入CMake工程

在任意一个Directory中创建一个package,分别在package中创建如下空间:

这里写图片描述

如上图所示:在C_lib package中包含CMakeLists.txtsrc package (该Directory必须包含这俩个),然后进去 src 后,在该Directory再创建一个CMakeLists.txt 和任意一个 hello.cpp 文件,必须文档到这里结束。

其中,俩个CMakeList.txt 需要包含的内容有:

C_lib 目录下的CMakeLists

CMAKE_MINIMUM_REQUIRED( VERSION 3.5.1 )   #这里我用的CMake是3.5.1的
PROJECT( C_lib)    #工程名字

#SET(CMAKE_CXX_COMPILER "g++")    #设定编译器
SET( CMAKE_BUILD_TYPE Debug  )    #编译类型
SET(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin) #将执行二进制文件输出到bin文件夹中
SET(LIBRARY_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/lib) #生成的库输出到lib文件夹中

INCLUDE_DIRECTORIES( ${PROJECT_SOURCE_DIR}/include ) #头文件放在include文件夹中
ADD_SUBDIRECTORY( ${PROJECT_SOURCE_DIR}/src )   #增加子文件,也就是进入源码文件夹中继续构建

src 目录下的CMakeLists:

CMAKE_MINIMUM_REQUIRED( VERSION 3.5.1 )  版本号
PROJECT( C_lib ) 工程名

set(CMAKE_CXX_FLAGS "-std=c++11 ")
add_executable(hello hello.cpp)  #生成可执行文件

src目录下的hello.cpp :

#include<iostream>
int main()
{
  std::cout<<"hello"<<std::endl;
  return 0;
}

至此,一个最简单的工程创建完毕,紧接着,打开QTCreator,file->open file or project ,然后选中 C_lib 下的CMakelists,至此则导入成功,然后再后面需要什么再往里加就行了。

2.相机模型及其公式推导

这里写图片描述

一个空间点 [X,Y,Z] [ X , Y , Z ] 和它在图像中的像坐标 [u,v,d] [ u , v , d ] ,有以下公式:

uv1=KXZYZ1 [ u v 1 ] = K [ X Z Y Z 1 ]

其中 K 为相机内参, k=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值