RGB-D SLAM——g2o篇(三)

本文介绍了g2o在RGB-D SLAM中的使用和结构,详细阐述了如何通过g2o优化球体示例,解决Ubuntu 14.04与g2o版本不兼容的问题,以及g2o的顶点、边类型和基本类结构。还展示了如何构建和优化包含相机位姿和特征点的图模型,以完成姿态估计和点云调整。
摘要由CSDN通过智能技术生成

一.g2o的使用

在该部分中,我们调用g2o程序优化一个球,就是在论文中经常看到的那个例子,论文名字为《g2o:a general framework for(hyper) graph optimization》,优化前后结果如下:

这里写图片描述

在使用g2o_viewer的时候,如果你是ubuntu14.04使用了现在的版本,那么在运行g2o_viewer的时候会出现错误,原因是:现在的g2o使用Qt5的,而ubuntu14.04使用的是Qt4的,所以会发生错误,具体解决方法如下(主要还是给g2o版本的问题):

1.卸载现有的g2o:

sudo rm -rf /usr/local/include/g2o
sudo rm -rf /usr/local/lib/libg2o*

2.切换到有效版本并重装g2o:

git clone https://github.com/RainerKuemmerle/g2o/
git log |grep 8ba8a*
git checkout 8ba8a03f7863e1011e3270bb73c8ed9383ccc2a2
sudo apt-get install libqt4-dev
sudo apt-get install qt4-qmake
sudo apt-get install libqglviewer-dev
mkdir build
cd build
cmake ../
make -j8

在terminator里输入g2o_viewer即可

二.g2o的结构

g2o里面有各种各样的求解器,而它的顶点、边的类型多种多样。通过自定义顶点和边,事实上,只要一个优化问题能够表达成图,就可以用g2o去求解它。常见的,比如bundle adjustment,ICP,数据拟合等。g2o是一个C++项目,其中矩阵数据结构多来自Eigen。

g2o最基本的类结构是怎么样的呢?我们如何来表达一个Graph,选择求解器呢?

这里写图片描述

先看上部分,SparseOptimizer是我们需要维护的东西,是一个Optimizable Graph,也是一个Hyper Graph。一个SparseOptimizer含有很多个顶点(继承与Base Vertex)和多条边(继承自BaseUnaryEdge,BaseBinaryEdge或BaseMultiEdge)。这些Base Vertex和Base Edge都是抽象的基类,而实际用的顶点和边,都是它们的派生类。

我们用SparseOptimizer.addVertex 和 SparseOptimizer.addEdge 向图中添加顶点和边,然后调用SpaseOptimizer.optimize来优化。

在优化前,需要指定我们用的求解器和迭代算法。从图下半部分来看,一个SparseOptimization拥有一个Optimization Algorithm,继承自Gusss-Newton,Levernberg-Marquardt,Powell’s dogleg 三者之一,同时拥有一个Solver,含有俩个部分。一个是SparseBlockMatrix,用于计算稀疏的雅克比和海塞;一个用于计算 HΔx=b H Δ x = − b ,需要一个线性方程的求解器。而这个求解器,可以从PCG,CSparse,Choldmod三者选一。
则一共三个步骤:
1.选择一个线性方程求解器,从 PCG, CSparse, Choldmod中选
2.选择一个 BlockSolver
3.选择一个迭代策略,从GN, LM, Doglog中选

实例如下:

俩张图:
这里写图片描述

像素的坐标假设为: zji=[u,v]j

RGB-D SLAM是一种同时定位与地图构建(Simultaneous Localization and Mapping)的技术,它利用RGB-D图像来实现对环境的感知和建模。RGB-D图像由RGB图像和深度图像组成,其中RGB图像提供了颜色信息,深度图像则提供了物体距离传感器的实际距离信息。通过将RGB图像和深度图像进行配准,可以实现像素级别的对应关系。RGB-D SLAM可以通过对连续的RGB-D图像进行处理,实时地估计相机的运动轨迹,并同时构建环境的维地图。 在RGB-D SLAM中,有多种算法和系统可供选择。例如,RGBDSLAM2是一个非常全面优秀的系统,它将SLAM领域的图像特征、优化、闭环检测、点云等技术融为一体,适合初学者使用并可以进行二次开发。然而,RGBDSLAM2的实时性较差,相机必须以较慢的速度运动,并且使用点云来表示维地图会消耗较多的内存。此外,还有其他的RGB-D SLAM算法和系统可供选择,具体选择哪种算法和系统取决于具体的应用需求和硬件条件。 引用\[1\]中提到了RGB-D图像的组成和配准过程,引用\[2\]中提到了RGB双目相机的特点和限制,引用\[3\]中提到了RGBDSLAM2系统的特点和缺点。这些引用内容提供了关于RGB-D SLAM的基本概念和相关技术的信息。 #### 引用[.reference_title] - *1* [SLAM(二)——RGB-D的含义](https://blog.csdn.net/u013401766/article/details/78671939)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [RGBD-SLAM总结](https://blog.csdn.net/YOULANSHENGMENG/article/details/124141028)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [RGB-D SLAM 相关总结](https://blog.csdn.net/qq_38167930/article/details/118879187)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值