福格行为模型

福格行为模型

福格行为模型也被称为“上瘾模型”,在工作和生活中应用非常的广泛。在工作中:产品设计、用户运营策略、活动设计、广告设计、游戏设计等等;在生活中:学习习惯培养、持续的健身、减肥计划等等。这些事通常大家以为是毅力驱使,或是借用之前的经验,其实背后有更加量化、更科学的方式去做指引,这就是「福格行为模型」,三大因素一个个匹配,并在曲线图中找到其准确位置,并判断其趋势。


模型介绍

在这里插入图片描述

很久以前,有个美国银行发起了一个存款项目,呼吁每个客户往自己的账户里存500块钱,以做不时之需。很多人都意识到了应急备用金的重要性,但这个项目却一直人数寥寥。后来,银行研究出30多种具体的、人们愿意存钱的场景来做各种宣传,比如:把不想带身上的硬币存入银行、把旧物品卖掉后的钱存银行、把每月发工资日的一小部分存银行…从那之后存钱的人数倍增。
归其原因,“往账户里存500块钱”,就是一个“抽象的愿望”,客户很愿意存钱,也基本有这个能力,唯独缺乏的就是“提示”,不知道该如何具体的做,以至于无法产生一个有效的行为。

运用心得

如何应用?四步应用原则来看看吧:

  • 【转化】设定目标,将其转化为更具体的行为;思考什么样的行为将产生这样的结果?(提升意愿)
  • 【驱动】为每一步的成就喝彩,通过正向反馈巩固动机,促使行为持续发生(增强意愿)
  • 【简化】化繁为简,将目标分解为一个一个容易达成的“小目标”,力求让执行变得更加简单(分解能力要求)
  • 【提示】建立与任务关联的提示,尽可能具体的展示出场景、动作、行为,促进目标客户行为的发生(增强提升)

个人用「福格行为模型」达成“自律”?

【动机】:角色扮演,问自己两个问题:

“我想成为谁?”
“我会为这个角色做出怎样的努力?”
当你想要成为某个角色时,就会思考这个角色平时会做什么事情,然后激励自己行动

【能力】:培养微习惯,问自己两个问题

“我要做什么”
“这件事是不是很容易完成?”

【提示】:巧用心理暗示,问自己两个问题

“我该怎样提醒自己?”
“我设置的提醒方式醒目吗?”

对于互联网工作者「福格行为模型」能够帮助你有效理解用户的行为,并做出针对性的设计;对于个人生活,它更能帮助你培养良好习惯,助力个人成长。

数据集介绍:野生动物与家畜多目标检测数据集 数据集名称:野生动物与家畜多目标检测数据集 数据规模: - 训练集:1,540张图片 - 验证集:377张图片 - 测试集:316张图片 分类类别: Brown-bear(棕熊)、Chicken(鸡)、Fox(狐狸)、Hedgehog(刺猬)、Horse(马)、Mouse(老鼠)、Sheep(绵羊)、Snake(蛇)、Turtle(龟)、Rabbit(兔)及通用object(物体)共11个类别 标注格式: YOLO格式标注,包含归一化坐标与类别索引,支持目标检测模型训练 数据特性: 涵盖航拍与地面视角,包含动物个体及群体场景,适用于复杂环境下的多目标识别 农业智能化管理: 通过检测家畜(鸡/马/绵羊等)数量及活动状态,辅助畜牧场自动化管理 生态监测系统: 支持野生动物(棕熊/狐狸/刺猬等)识别与追踪,用于自然保护区生物多样性研究 智能安防应用: 检测农场周边危险动物(蛇/狐狸),构建入侵预警系统 动物行为研究: 提供多物种共存场景数据,支持动物群体交互行为分析 高实用性标注体系: - 精细标注包含动物完整轮廓的边界框 - 特别区分野生动物与家畜类别,支持跨场景迁移学习 多维度覆盖: - 包含昼间/复杂背景/遮挡场景 - 涵盖陆地常见中小型动物与禽类 - 提供通用object类别适配扩展需求 工程适配性强: - 原生YOLO格式适配主流检测框架(YOLOv5/v7/v8等) - 验证集与测试集比例科学,支持可靠模型评估 生态价值突出: - 同步覆盖濒危物种(龟类)与常见物种 - 支持生物多样性保护与农业生产的双重应用场景
内容概要:本文档详细介绍了Python实现TSO-ELM(金枪鱼群优化算法优化极限学习机)多输入单输出回归预测的项目实例。极限学习机(ELM)作为一种快速训练的前馈神经网络算法,虽然具有训练速度快、计算简单等优点,但也存在局部最优解和参数敏感性的问题。金枪鱼群优化算法(TSO)通过模拟金枪鱼群体觅食行为,具有较强的全局搜索能力。将TSO与ELM结合形成的TSO-ELM模型,可以优化ELM的输入层和隐藏层之间的权重,提高回归预测的准确性。项目包括数据预处理、TSO优化、ELM回归模型训练和预测输出四个主要步骤,并提供了详细的代码示例。; 适合人群:对机器学习、优化算法有一定了解的数据科学家、算法工程师和研究人员,特别是那些希望深入理解智能优化算法在回归预测任务中的应用的人群。; 使用场景及目标:① 提升ELM在多输入单输出回归预测中的性能,特别是在处理非线性问题时的预测精度;② 解决ELM中的局部最优解和参数敏感性问题;③ 优化ELM的隐层权重和偏置值,提高模型的表达能力和预测能力;④ 在金融、气象、能源、医疗、交通等领域提供更准确的预测模型。; 阅读建议:本文档不仅提供了理论解释,还包含详细的代码实现,建议读者在阅读过程中结合代码进行实践,理解TSO-ELM模型的工作原理,并尝试调整参数以优化预测效果。同时,读者应关注TSO算法在高维复杂问题中的应用挑战,思考如何改进优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值