论文解读 | 超越人类智慧!类脑多模态混合神经网络助力机器人精准定位

原创 | 文 BFT机器人

01

研究内容

这篇论文的研究内容是基于大脑启发的多模态混合神经网络,用于机器人地点识别。研究人员设计了一个名为NeuroGPR的系统,该系统可以模拟大脑的多模态感知机制,从传统和神经形态传感器中编码和整合多模态线索,以实现机器人的地点识别。为了实现这一目标,研究人员使用了多尺度液态状态机等多种神经网络模型,以异步融合多模态信息。研究结果表明,NeuroGPR在机器人地点识别方面表现出更好的性能和鲁棒性,具有广泛的应用前景。

02

论文原理

a.大脑启发的多模态感知机制

研究人员从大脑的多模态感知机制中获取灵,设计了一个基于大脑启发的多模态混合神经网络模型,用于机器人地点识别。该模型可以模拟大脑的多模态感知机制,从传统和神经形态传感器中编码和整合多模态线索,以实现机器人的地点识别。

图1所示。人类和机器人的位置识别机制。

A)人类可以根据具有时空连续性的多态感觉线索来识别一个地方。位置由外部感觉织响和内部连接的时空细的给码。多通消的感觉线索可以共同激活这些细胞。联合放电模式可以唯一地编码和回忆一个特定的地方。

(B) 该机器人可以识别一个地方的大脑启发的地方识别系统,simiarlv的机器人可以使用多模态传感器获得环境的感官线索。一个部署在一个神经形态计算芯片上的mhnn模型被用来对这些感觉线索进行码,该模型可以用多时空尺度的融合方法对位置进行可第的识别。

b.多尺度液态状态机

研究人员引入了多尺度液态状态机等多种神经

### DeepSeekMoE 架构介绍 DeepSeekMoE 是一种基于混合专家(Mixture of Experts, MoE)架构的语言模型,旨在通过更高效的计算资源利用来实现更高的性能和更好的扩展性[^1]。 #### 原理 该架构的核心理念在于将大型神经网络分解成多个较小的子网络——即所谓的“专家”,这些专家各自专注于处理特定型的输入数据。当接收到一个新的输入时,系统会动态选择最适合当前任务的一个或几个专家来进行处理。这种机制不仅提高了模型的整体效率,还使得每个专家能够在其擅长领域内达到更高水平的专业化程度[^2]。 为了进一步提升效果并减少通信开销,在训练过程中引入了一种称为 Top-k 路由算法的技术。它允许每个 token 只被发送给最有可能对其做出最佳响应的一小部分选定专家,而不是整个集合中的每一个成员。这有效地降低了跨设备传输所需的数据量,并促进了更大规模分布式系统的构建与运行。 ```python def top_k_routing(logits, k=2): """ 实现Top-k路由算法 参数: logits (Tensor): 输入logits张量 k (int): 选取前k个最大值 返回: Tensor: 经过top-k筛选后的索引列表 """ _, indices = torch.topk(logits, k=k) return indices ``` #### 特点 - **高效资源分配**:相比于传统全连接层设计,MoE 方法能够在保持甚至超越原有表现力的同时显著降低参数总量以及所需的硬件成本。 - **高度可定制性强**:由于各个组件之间相对独立运作的特点,开发者可以根据实际需求灵活调整不同模块的数量及其内部结构配置,从而更好地适应多样化应用场景的要求。 - **易于扩展部署**:得益于上述提到的低耦合度特性加上特有的路由策略支持,即使面对海量级别的并发请求也依然可以平稳应对而不至于造成严重的瓶颈现象发生。 #### 应用场景 鉴于以上优势所在,此框架特别适用于那些对于实时交互体验有着较高标准的任务环境之中: - 自然语言理解服务提供高质量对话能力; - 大型多模态数据分析平台助力精准营销决策制定过程; - 智能客服机器人满足企业客户咨询解答方面的需求等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值