动态SLAM(Simultaneous Localization and Mapping with Dynamic Objects)是传统SLAM(同步定位与地图构建)的一个扩展,专注于处理动态环境中的物体。在动态环境下,SLAM不仅需要构建地图和定位,还要识别和处理动态物体(如人、车辆等)。因此,相关的数据集通常包含动态环境下的传感器数据(如激光雷达、相机、IMU等),并且标注了动态物体的运动轨迹。
以下是一些与动态SLAM相关的著名数据集:
1. KITTI Dataset
- KITTI Odometry Benchmark:这个数据集包含了从车辆中收集的视觉和激光雷达数据,适用于各种自动驾驶和SLAM任务。虽然原本不是专门为动态SLAM设计的,但数据中包含了大量的动态场景(如行人、其他车辆、交通信号等),因此广泛用于动态SLAM研究。
- KITTI Tracking Dataset:该数据集为动态物体跟踪提供了标注,包括不同的交通参与者(如行人、车辆)及其运动轨迹,适用于动态SLAM中的动态物体检测与跟踪。
2. TUM RGB-D Dataset
- TUM RGB-D 数据集主要包含通过RGB相机和深度传感器(如Kinect)获得的数据,适用于研究基于视觉的SLAM。虽然该数据集的主要目的是研究静态环境下的SLAM,但其部分数据集包含了动态物体,如人的移动,因此可以应用于动态SLAM的研究。
3. Oxford Robotcar Dataset
- Oxford RobotCar 是一个面向自动驾驶的高质量数据集,包含了车辆在不同时间和天气条件下的行驶数据。这个数据集涉及到复杂的动态环境,包含行人、其他车辆等动态物体的运动,适合用于研究动态SLAM和多模态感知。
4. SemanticKITTI
- SemanticKITTI 是基于KITTI数据集的一个扩展,除了原始的定位和地图构建任务,还包括对每个激光点的语义标签(如车辆、行人、建筑等)。对于动态SLAM研究者来说,这个数据集提供了有关动态物体的额外信息,有助于分离静态与动态物体,并进一步提高地图构建的精度。
5. Dynamic Vision and Laser Data (DVLD)
- 该数据集包含动态环境下的RGB图像、激光雷达数据、IMU数据等。它专为动态SLAM任务设计,尤其是在动态物体检测、跟踪和SLAM地图构建方面具有挑战性。
6. UAV-Lidar Dataset
- UAV-Lidar 是一个用于研究无人机在动态环境中如何构建地图的激光雷达数据集。数据集包括动态物体(如车辆、行人)以及环境的三维地图构建任务,适用于动态SLAM中动态物体的处理与地图更新。
7. The Cityscapes Dataset
- Cityscapes 数据集是一个大规模的城市街景数据集,包含了城市交通环境中的图像,适用于自动驾驶和SLAM研究。尽管这个数据集本身更多用于语义分割任务,但它包含了丰富的动态物体(如行人、车辆等)数据,可以用来开发动态SLAM系统。
8. EuRoC MAV Dataset
- EuRoC MAV 数据集包含了通过无人机收集的视觉和IMU数据,适用于视觉惯性SLAM(VINS)。该数据集也包含动态物体的场景,适用于动态SLAM中的动态物体检测与分离。
9. ApolloScape
- ApolloScape 是一个面向自动驾驶的城市道路数据集,涵盖了交通、行人、建筑等多个动态元素,适用于动态SLAM的研究,尤其是在复杂城市环境中的定位与地图构建。
10. Carmen Dataset
- Carmen 是一个机器人SLAM平台的数据集,包含了来自激光雷达和其他传感器的传感器数据。该数据集专为动态SLAM任务设计,旨在解决动态环境中的物体识别、跟踪和定位问题。
11. Dynamic 3D Dataset (ETH Zurich)
- 由苏黎世联邦理工学院(ETH Zurich)提供的Dynamic 3D Dataset 包含了通过激光雷达采集的动态环境数据。它涵盖了包括静态和动态物体的3D场景,适用于动态SLAM中的动态物体建模和运动跟踪。
12. Mapillary Vistas Dataset
- Mapillary Vistas 是一个大规模的图像数据集,专注于城市环境中的物体和场景理解。数据集中标注了动态物体(如行人、交通工具等),对动态SLAM研究尤为有用,尤其在复杂的城市环境中进行动态物体分离和地图更新时。
这些数据集提供了丰富的动态物体信息,能帮助研究者开发和验证动态SLAM算法,尤其是在复杂和多变的环境中。不同的数据集适用于不同的研究方向(如激光雷达、视觉SLAM、无人驾驶、机器人导航等),根据具体的应用需求选择合适的数据集非常重要。