图神经网络实战(14)——基于节点嵌入预测链接
0. 前言
我们已经了解了如何使用图神经网络 (Graph Neural Networks, GNN) 生成节点嵌入,我们可以使用这些嵌入执行矩阵分解 (matrix factorization
) 完成链接预测任务。本节将介绍两种用于链接预测的 GNN 架构
——图自编码器 (Graph Autoencoder
, GAE
) 和变分图自编码器 (Variational Graph Autoencoder
, VGAE
)。
1. 图自编码器
图自编码器 (Graph Autoencoder
, GAE
) 和变分图自编码器 (Variational Graph Autoencoder
, VGAE
) 架构都是 Kipf
和 Welling
于 2016
年所提出的。它们分别对应于两种流行的神经网络架构——