图神经网络实战(14)——基于节点嵌入预测链接

图神经网络实战(14)——基于节点嵌入预测链接

0. 前言

我们已经了解了如何使用图神经网络 (Graph Neural Networks, GNN) 生成节点嵌入,我们可以使用这些嵌入执行矩阵分解 (matrix factorization) 完成链接预测任务。本节将介绍两种用于链接预测的 GNN 架构——图自编码器 (Graph Autoencoder, GAE) 和变分图自编码器 (Variational Graph Autoencoder, VGAE)。

1. 图自编码器

图自编码器 (Graph Autoencoder, GAE) 和变分图自编码器 (Variational Graph Autoencoder, VGAE) 架构都是 KipfWelling2016 年所提出的。它们分别对应于两种流行的神经网络架构——

评论 73
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值