[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-2(2) 质量刚体的在坐标系下运动

本文详细介绍了质量刚体在坐标系下的运动学与动力学,重点解析了欧拉方程。内容涵盖动量、角动量、惯性矩阵及其在不同坐标系的表达,旨在帮助读者深入理解刚体运动的基本原理。
摘要由CSDN通过智能技术生成

本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。

2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
黎 旭,陈 强 洪,甄 文 强 等.惯 性 张 量 平 移 和 旋 转 复 合 变 换 的 一 般 形 式 及 其 应 用[J].工 程 数 学 学 报,2022,39(06):1005-1011.

食用方法
质量点的动量与角动量
刚体的动量与角动量——力与力矩的关系
惯性矩阵的表达与推导——在刚体运动过程中的作用
惯性矩阵在不同坐标系下的表达
务必自己推导全部公式,并理解每个符号的含义

机构运动学与动力学分析与建模 Ch00-2质量刚体的在坐标系下运动Part2


2.2.3 欧拉方程 Euler equation

对式 H ⃗ Σ M / O F \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F} H ΣM/OF进一步分析,有:
H ⃗ Σ M / O F = ∫ R ⃗ O P i F × ( d m i ⋅ d R ⃗ P i F d t ) = ∫ ( ( R ⃗ P i F − R ⃗ O F ) × V ⃗ P i F ) d m i = ∫ ( R ⃗ P i F × V ⃗ P i F ) d m i − ∫ ( R ⃗ O F × V ⃗ P i F ) d m i = H ⃗ Σ M F − R ⃗ O F × P ⃗ G F \begin{split} \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}&=\int{\vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \left( \mathrm{d}m_i\cdot \frac{\mathrm{d}\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}}{\mathrm{d}t} \right)}=\int{\left( \left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}-\vec{R}_{\mathrm{O}}^{F} \right) \times \vec{V}_{\mathrm{P}_{\mathrm{i}}}^{F} \right) \mathrm{d}m_i} \\ &=\int{\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}\times \vec{V}_{\mathrm{P}_{\mathrm{i}}}^{F} \right) \mathrm{d}m_i}-\int{\left( \vec{R}_{\mathrm{O}}^{F}\times \vec{V}_{\mathrm{P}_{\mathrm{i}}}^{F} \right) \mathrm{d}m_i} \\ &=\vec{H}_{\Sigma _{\mathrm{M}}}^{F}-\vec{R}_{\mathrm{O}}^{F}\times \vec{P}_{\mathrm{G}}^{F} \end{split} H ΣM/OF=R OPiF×(dmidtdR PiF)=((R PiFR OF)×V PiF)dmi=(R PiF×V PiF)dmi(R OF×V PiF)dmi=H ΣMFR OF×P GF
对上式进一步求导,则有:
d H ⃗ Σ M / O F d t = d H ⃗ Σ M F d t − d ( R ⃗ O F × P ⃗ G F ) d t = d H ⃗ Σ M F d t − V ⃗ O F × P ⃗ G F − m t o t a l ⋅ R ⃗ O F × a ⃗ G F \frac{\mathrm{d}\vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}}{\mathrm{d}t}=\frac{\mathrm{d}\vec{H}_{\Sigma _{\mathrm{M}}}^{F}}{\mathrm{d}t}-\frac{\mathrm{d}\left( \vec{R}_{\mathrm{O}}^{F}\times \vec{P}_{\mathrm{G}}^{F} \right)}{\mathrm{d}t}=\frac{\mathrm{d}\vec{H}_{\Sigma _{\mathrm{M}}}^{F}}{\mathrm{d}t}-\vec{V}_{\mathrm{O}}^{F}\times \vec{P}_{\mathrm{G}}^{F}-m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{O}}^{F}\times \vec{a}_{\mathrm{G}}^{F} dtdH ΣM/OF=dtdH ΣMFdtd(R OF×P GF)=dtdH ΣMFV OF×P GFmtotalR OF×a GF
其中:
H ⃗ Σ M F = ∫ R ⃗ P i F × p ⃗ P i F = ∫ ( R ⃗ G F + R ⃗ G P i F ) × ( d m i ⋅ ( V ⃗ G F + V ⃗ G P i F ) ) = ∫ R ⃗ G F × V ⃗ G F d m i ⏟ m t o t a l ⋅ R ⃗ G F × V ⃗ G F + ∫ R ⃗ G F × V ⃗ G P i F d m i ⏟ 0 + ∫ R ⃗ G P i F × V ⃗ G F d m i ⏟ 0 + ∫ R ⃗ G P i F × V ⃗ G P i F d m i ⏟ ∫ R ⃗ G P i F × ( ω ⃗ M F × R ⃗ G P i F ) d m i = m t o t a l ⋅ R ⃗ G F × V ⃗ G F + ∫ R ⃗ G P i F × ( ω ⃗ M F × R ⃗ G P i F ) d m i = m t o t a l ⋅ R ⃗ G F × V ⃗ G F + ∫ ( R ⃗ G P i F ⋅ R ⃗ G P i F ) ω ⃗ M F d m i − ∫ ( R ⃗ G P i F ⋅ ω ⃗ M F ) R ⃗ G P i F d m i \begin{split} \vec{H}_{\Sigma _{\mathrm{M}}}^{F}&=\int{\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}\times \vec{p}_{\mathrm{P}_{\mathrm{i}}}^{F}}=\int{\left( \vec{R}_{\mathrm{G}}^{F}+\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right) \times \left( \mathrm{d}m_i\cdot \left( \vec{V}_{\mathrm{G}}^{F}+\vec{V}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right) \right)} \\ &=\begin{array}{c} \underbrace{\int{\vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}}\mathrm{d}m_i}\\ m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}\\ \end{array}+\begin{array}{c} \underbrace{\int{\vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{GP}_{\mathrm{i}}}^{F}}\mathrm{d}m_i}\\ 0\\ \end{array}+\begin{array}{c} \underbrace{\int{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\times \vec{V}_{\mathrm{G}}^{F}}\mathrm{d}m_i}\\ 0\\ \end{array}+\begin{array}{c} \underbrace{\int{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\times \vec{V}_{\mathrm{GP}_{\mathrm{i}}}^{F}}\mathrm{d}m_i}\\ \int{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\times \left( \vec{\omega}_{\mathrm{M}}^{F}\times \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right)}\mathrm{d}m_i\\ \end{array} \\ &=m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}+\int{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\times \left( \vec{\omega}_{\mathrm{M}}^{F}\times \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right)}\mathrm{d}m_i \\ &=m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}+\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right) \vec{\omega}_{\mathrm{M}}^{F}}\mathrm{d}m_i-\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right) \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}\mathrm{d}m_i \end{split} H ΣMF=R PiF×p PiF=(R GF+R GPiF)×(dmi(V GF+V GPiF))= R GF×V GFdmimtotalR GF×V

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LiongLoure

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值