【智能算法】保姆级教程-如何使用CEC测试集,以及如何定义自己的优化问题

本文介绍了如何使用CEC2005测试集评估智能算法性能,包括无约束优化问题的函数minf(x1,x2)=sin(x1)+x2^2的实现以及有约束问题的罚函数处理方法。作者提供了目标函数和调用脚本的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述


1.准备工作

一个CEC2005测试集
一个测试智能算法,比如麻雀搜索算法SSA

2.使用CEC2005测试集

以CEC2005测试集函数F7为例:
在这里插入图片描述
在这里插入图片描述

3.自定义优化问题-无约束问题

这里举例
m i n f ( x 1 , x 2 ) = s i n ( x 1 ) + x 2 2 minf(x_1,x_2)=sin(x_1)+x_2^2 minf(x1,x2)=sin(x1)+x22
首先编写目标函数fun.m:
在这里插入图片描述

编写脚本调用:
在这里插入图片描述
在这里插入图片描述

4.自定义优化问题-有约束问题

有约束问题一般采用罚函数法将约束问题转为无约束问题,其思想是当优化变量不满足约束时进行惩罚。
这里举例
{ min ⁡ f ( x 1 , x 2 ) = s i n ( x 1 ) + x 2 2 s . t . x 1 + x 2 = 1 2 x 1 − x 2 > 0 \begin{cases}\min f(x_1,x_2)=sin(x_1)+x_2^2\\s.t.\\x_1+x_2=1 \\ 2x_1-x_2>0\end{cases} minf(x1,x2)=sin(x1)+x22s.t.x1+x2=12x1x2>0
首先编写目标函数fun1.m:
在这里插入图片描述
编写脚本exp3.m调用:
在这里插入图片描述

在这里插入图片描述

5.代码实现

在这里插入图片描述

在这里插入图片描述

代码传送门

### 使用CEC2005标准解决优化问题 CEC2005是指IEEE Congress on Evolutionary Computation (CEC)于2005年发布的用于评估进化算法性能的一组测试函数集合[^1]。这些测试函数设计用来挑战不同的全局优化方法,特别是那些基于自然选择和遗传机制的方法。 #### 测试函数特性 该套件包含了多种具有不同特性的单目标数值优化问题,比如多峰性、偏移峰值位置以及可变维度等特征。这使得研究者能够全面考察所提出的算法在处理复杂性和多样性方面的表现能力。 #### 应用场景 对于参加Kaggle竞赛或其他类型的机器学习/数据挖掘比赛而言,理解并掌握CEC2005可以为参赛者提供一种标准化的方式去验证自己模型的有效性;同时也可以作为开发新算法时的一个重要参考依据。 #### 实现示例 下面给出一段Python代码来展示如何加载并调用其中一个名为`F1`的基准函数: ```python import numpy as np from cec2005 import F1 # 假设有一个库实现了CEC2005的标准接口 def evaluate_solution(solution_vector): """计算给定解向量的目标值""" f1_instance = F1(dimension=len(solution_vector)) return f1_instance.evaluate(solution_vector) # 随机生成一个初始猜测解 initial_guess = np.random.uniform(-100, 100, size=(30,)) objective_value = evaluate_solution(initial_guess) print(f"The objective value is {objective_value}") ``` 此段程序首先导入必要的模块,接着定义了一个辅助函数`evaluate_solution()`用于接收候选解并向用户提供相应的适应度得分。最后通过随机方式创建了一组参数值,并将其传递给上述函数得到具体的结果输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值