
智能算法改进
文章平均质量分 93
小O的算法实验室
代码获取公众号:小O的算法实验室
分享算法与应用
展开
-
2025年ISA Trans SCI2区TOP:超级哈里斯鹰算法Super-HHO+高功率机车悬挂载荷偏差控制,深度解析+性能实测
本研究建立了六轴铁路车辆静态二次弹簧载荷调节的理论模型,该模型适用于各种六轴铁路车辆,如机车、地铁、客运列车和货运列车。本文提出了一种简化的支撑结构模型,通过将六轴车辆的12点支撑结构简化为4点支撑结构,有效减少了计算复杂度,将超级哈里斯鹰优化算法(Super-HHO)应用于铁路车辆悬挂载荷控制领域,不仅减少了垫片的位置和数量,降低了垫片工作量,还提升了静态二次弹簧载荷偏差控制的效率。原创 2025-04-28 20:13:44 · 576 阅读 · 0 评论 -
2025年AEJ SCI2区:增强麻雀搜索算法CERL-SSA+工业物联网感知通信,深度解析+性能实测
感知、通信和协同优化是工业物联网(IIoT)研究中的关键领域,本文通过将能源消耗问题转化为优化挑战,探索如何在IIoT用户终端设备中减少能源消耗。论文提出了一种数据感知共享架构来降低设备能耗,并在多个智能终端设备、协同设备和边缘IIoT代理设备的场景下,综合考虑用户设备位置稳定性、本地网络状态、任务到达率和队列稳定性等因素。本文提出了混沌精英反向学习麻雀搜索算法(CERL-SSA)。实验结果表明,CERL-SSA算法在IIoT感知通信和协同优化中的性能和有效性优于传统方法,验证了其优越性。原创 2025-04-27 20:43:23 · 739 阅读 · 0 评论 -
2024年ASOC SCI1区TOP:改进灰狼算法IGWO+股票指数收益预测,深度解析+性能实测
股票指数收益预测是商业经理和投资者进行资产配置与投资决策的重要依据,为提高预测精度,本文提出了一种基于改进灰狼算法(IGWO)与树突神经模型(DNM)相结合的模型。DNM具有更透明的结构、较强的非线性处理能力,并具备独特的自动修剪机制,能够有效应对金融市场的复杂性。IGWO为全局和局部搜索算法开发了用于动态平衡的非线性控制参数,引入混沌理论来优化灰狼的权重分配,Alpha狼局部搜索策略。原创 2025-04-24 20:59:13 · 936 阅读 · 0 评论 -
2024年ESWA SCI1区TOP:量子计算蜣螂算法QHDBO,深度解析+性能实测
蜣螂优化算法是一种群体智能优化算法,具有较强的优化能力和快速收敛性,但容易在优化过程后期陷入局部最优解。本文提出了一种量子计算和多策略混合的蜣螂优化算法(QHDBO),QHDBO通过佳点集初始化种群,动态平衡机制,量子t分布变异策略增强DBO算法,可以避免算法陷入局部最优解。原创 2025-04-22 22:02:11 · 1082 阅读 · 0 评论 -
2024年TETCI SCI2区:增强差分进化麻雀搜索算法DSSADE,深度解析+性能实测
麻雀搜索算法(SSA)是近年来提出的一种新型群体智能优化方法,因其控制参数少且实现简便,迅速成为一种高效且受欢迎的优化方法。尽管SSA在解决问题时准确性较高且收敛速度快,但其在应对复杂优化问题时表现不佳,且在探索与开发能力之间存在不平衡。本文提出了一种改进差分进化算子的动态双因子麻雀搜索算法(DSSADE),DSSADE算法通过引入动态双因子模式,平衡了全局与局部搜索能力,并加速了收敛过程。原创 2025-04-21 21:18:34 · 717 阅读 · 0 评论 -
2025年KBS SCI1区TOP:增强天鹰算法EBAO,深度解析+性能实测
本文提出了增强二进制天鹰算法(EBAO),针对无线传感器网络(WSNs)中的入侵检测系统(IDSs)。由于WSNs的特点是规模庞大、节点移动性强以及存储空间有限,设计有效的IDS存在诸多挑战。EBAO模型通过特征选择(FS)技术,降低数据维度并提高IDS的准确性,从而优化入侵检测过程。EBAO采用混合初始化方法,结合Lévy飞行和随机均匀生成函数生成更适合FS问题的解决方案;β-爬山算法作为局部搜索技术增强AO在FS解决空间中的搜索效率;利用哈里斯鹰优化算法中的变异方程来探索FS解决空间。原创 2025-04-19 23:08:02 · 627 阅读 · 0 评论 -
2024年RIS SCI2区:自适应天鹰算法AAO,深度解析+性能实测
智能电网通过集成可再生能源并管理供需动态平衡来提高效率,本文提出了自适应天鹰算法(AAO),AAO使用Sigmoid因子来平衡探索和开发,根据迭代进度适应从广泛搜索到聚焦搜索的转变。原创 2025-04-18 21:11:44 · 635 阅读 · 0 评论 -
2025年OE SCI2区TOP:多种群灰狼算法NCM-GWO,UUV群协同路径规划,深度解析+性能实测
路径规划对于实现无人水下航行器(UUV)集群在复杂和动态水下环境中的高效协同作业至关重要。本文提出了一种三维UUV集群协同路径规划框架,其基于改进灰狼算法NCM-GWO构建,其通过将布谷鸟搜索(CS)的全局搜索机制与多种群策略(MP)的局部精细化机制相结合,实现探索和开发之间实平衡。此外,NCM-GWO采用非线性搜索策略动态调整收敛因子,进一步增强了算法在复杂三维环境中的性能。原创 2025-04-17 19:22:52 · 574 阅读 · 0 评论 -
2023年CCF-C NCA:自适应麻雀搜索算法MASSA,深度解析+性能实测
麻雀搜索算法(SSA)是一种受麻雀觅食策略启发的元启发式算法,尽管SSA性能竞争力强,但仍存在开发与探索不平衡,容易陷入局部最优的问题。本文提出改进自适应麻雀搜索算法(MASSA),其通过引入混沌反向学习技术增加种群多样性,并通过动态自适应权重来平衡算法的开发与探索能力。此外,自适应螺旋搜索策略进一步提升了MASSA的性能。原创 2025-04-16 20:17:28 · 548 阅读 · 0 评论 -
2025年RIE SCI2区:三角变异黏菌算法TMSMA,深度解析+性能实测
全局优化涉及多个领域,为解决复杂的多变量问题提供了有效的方案,这些问题通常是高度非线性和高维的。负荷频率控制对于维持孤岛微电网的稳定性至关重要。当发生扰动时,系统频率会发生波动,必须抑制这些波动,以确保孤岛微电网的可靠运行。本文提出了三角变异粘菌算法(TMSMA),TMSMA使用佳点集进行种群初始化,相比于均匀随机初始化,增强了多样性;引入三角变异作为主要的探索机制,有效识别潜在的有利区域;采用多操作并行搜索,平衡探索和开发,提升了算法在多变环境中的适应性。原创 2025-04-15 22:02:42 · 885 阅读 · 0 评论 -
2025年SP SCI2区:自适应灰狼算法IGWO,深度解析+性能实测
在复杂的电磁环境中,利用被动雷达网络跟踪干扰源对于增强抗干扰能力、军事作战安全和战略决策具有重要意义。然而,传统的干扰源跟踪算法由于被动雷达系统的高度非线性和未知噪声特性,常常存在跟踪精度低和收敛速度慢的问题。为了提高被动雷达网络的干扰源跟踪能力,本文提出了一种基于改进灰狼算法的最大相关熵立方卡尔曼滤波器。IGWO提出了一种通过高斯随机游走和高斯变异策略改进的灰狼优化机制,用于准确估计未知过程和测量噪声的特性,为立方卡尔曼滤波算法提供更准确的模型参数。原创 2025-04-14 20:08:58 · 991 阅读 · 0 评论 -
2025年CG SCI1区TOP:增强麻雀搜索算法ISSA,深度解析+性能实测
为实现混凝土面板堆石坝坝体与基础渗透系数的快速、准确反演,本文提出了一种基于改进麻雀搜索算法与支持向量机相结合的ISSA-SVR模型,该模型通过引入Circle映射初始化、周期性收敛因子及莱维飞行机制,有效解决了传统麻雀搜索算法中初始种群分布不均与易陷入局部最优的问题。原创 2025-04-13 15:59:34 · 1063 阅读 · 0 评论 -
2025年ESWA SCI1区TOP:动态分类麻雀搜索算法DSSA,深度解析+性能实测
污染物排放对环境造成负面影响,而可再生能源的不稳定性则威胁着微电网的安全运行。为了在保障电力供应可靠性的同时实现环境和经济目标的平衡,本文提出了一种动态分类麻雀搜索算法(DSSA),用于解决孤立微电网中的经济环境调度问题。DSSA采用精英opposition-Chebyshev初始化策略,优化初始解的多样性和均匀性。受因材施教理念启发,DSSA将麻雀种群动态划分为三个组,并为每个组采用不同策略,从而提高收敛速度和精度。基于马尔科夫链理论,证明了DSSA的收敛性。原创 2025-04-12 11:35:50 · 742 阅读 · 0 评论 -
2024年KBS SCI1区TOP:信息增益比子特征分组赋能粒子群算法ISPSO,深度解析+性能实测
特征选择是机器学习中的关键预处理步骤,广泛应用于实际问题。尽管粒子群算法(PSO)因其强大的全局搜索能力被广泛用于特征选择,但要开发一种高效的PSO方法仍然面临不小的挑战。本文提出了信息增益比子特征分组赋能粒子群算法ISPSO,该方法通过引入信息增益比来评估特征的重要性,从而提升特征选择的效果。在ISPSO的特征选择过程中,首先将特征划分为不同的组,以构建初始种群。鉴于特征选择任务本质上是二元问题,ISPSO采用了基于概率的方法代替传统的PSO速度概念。原创 2025-04-10 19:54:51 · 788 阅读 · 0 评论 -
2025年CCF-C NCA:导航变量多目标粒子群算法NMOPSO,深度解析+性能实测
路径规划是无人机(UAV)任务执行的核心,因为它决定了无人机完成任务所需的飞行路径。为了解决这一问题,本文提出了一种基于导航变量的多目标粒子群算法(NMOPSO)。NMOPSO采用了基于导航变量的路径表示方法,这不仅能够考虑运动学约束,还能充分利用无人机的机动性。此外,算法引入了自适应变异机制,以提高粒子群的多样性,从而优化解的质量。原创 2025-04-09 21:02:23 · 879 阅读 · 0 评论 -
2024年AIS SCI:多策略灰狼算法CBRGWO,深度解析+性能实测
灰狼优化算法(GWO)在许多领域得到广泛应用,但对于一些复杂问题,尤其是高维度和多模态问题,基本算法的计算能力有限,无法提供满意的解。本文提出了一种多策略增强灰狼优化算法(CBRGWO)。CBRGWO算法通过引入高斯骨架、随机选择和混沌博弈机制,增强了算法的全局搜索能力。原创 2025-04-08 19:24:32 · 1306 阅读 · 0 评论 -
2024年ESWA SCI1区TOP:二次插值局部粒子群算法QPSOL,深度解析+性能实测
粒子群算法(PSO)由于其灵活性和强大的优化性能,在实际应用中得到了广泛使用。本文提出了一种二次插值局部粒子群算法(QPSOL),其通过增加多样性和更好地平衡探索与开发阶段,提高了优化策略的效率。与传统的局部搜索方法相比,QPSOL采用二次插值技术,强化了在最优搜索代理周围的开发能力,提升了解决方案的精确度。原创 2025-04-06 10:56:42 · 855 阅读 · 0 评论 -
2023年CIE SCI1区TOP:序列融合麻雀搜索算法ISSA,深度解析+性能实测
麻雀搜索算法(SSA)是一种基于麻雀觅食和防捕行为的群体智能算法。然而,基本SSA在迭代过程中,种群多样性逐渐降低,容易陷入局部最优解。为了解决这一问题,本文提出了五种改进麻雀搜索算法(ISSA 1-5),通过依次融合五种改进策略:改进的正弦映射、精英反向学习、正弦余弦算法、莱维飞行和高斯变异,从而提升SSA的性能。原创 2025-04-02 20:40:01 · 981 阅读 · 0 评论 -
2021年ASOC SCI1区:自适应差分进化算EaDE,深度解析+性能实测
现有的多策略自适应差分进化算法(DE)通常会试验多种策略,并将更多资源分配给表现更优的策略。然而,这种方法的实施可能会导致过度开发或过度探索的问题。为了优化性能,本文提出了显式自适应方案(Ea scheme),它将不同策略分开,并根据需求灵活运用。EaDE是将进化过程分为选择候选者与相似性选择(SCSS)代和自适应代。在SCSS代中,通过采用平衡策略来学习和满足开发与探索的需求;而在自适应代中,则根据这些需求自适应地采用开发性或探索性策略。原创 2025-04-01 19:25:02 · 844 阅读 · 0 评论 -
2019年ASOC SCI1区:基于终端交叉和扰动导向粒子群算法TCSPSO,深度解析+性能实测
粒子群算法(PSO)是一种简单而高效的进化算法,它已被广泛应用于解决多种现实世界的优化问题。尽管如此,种群多样性容易丧失是其一个缺点,这使得粒子难以逃离局部最优。为了解决这一问题,本文提出了基于终端交叉和扰动导向粒子群算法(TCSPSO),其通过构建一个新的交叉算子来增强种群多样性。为了帮助粒子跳出局部最优,采用全局扰动并在迭代后期改变粒子的移动方向。原创 2025-03-30 11:11:47 · 352 阅读 · 0 评论 -
2024年SEVC SCI1区:进化尺度适应差分进化算法ESADE,深度解析+性能实测
差分进化算法(DE)的性能在很大程度上依赖于进化尺度,该尺度由包括变异、交叉等生成操作以及包括突变因子和交叉率的控制参数所控制。调整进化尺度以适应不同类型的问题是DE研究中一个关键且具有挑战性的未解决问题。为了有效地解决这一问题,本文提出了一种基于进化尺度适应差分算法(ESADE)。ESADE提出了一个成功的尺度估计机制,通过利用试验向量和目标向量提供的成功进化反馈来测量适当的进化尺度。原创 2025-03-28 18:23:26 · 997 阅读 · 0 评论 -
2024年SEVC SCI1区TOP:多策略灰狼算法MSGWO,深度解析+性能实测
在评估基金表现时选择特征的方法主要依赖于传统统计学,这在多维背景下可能导致数据维度过高。灰狼算法(GWO)是一种群体智能优化算法,以其结构简单和参数少而广泛应用于特征选择。然而,GWO存在局部最优和探索与开发不平衡的问题。本文提出了一种多策略灰狼算法(MSGWO),在初始化阶段应用随机对立学习以增强种群质量。非线性化收敛因子以协调全局探索和局部开发能力。最后,应用两阶段混合变异算子来修改更新机制,以增加种群多样性并平衡GWO的探索和开发能力。原创 2025-03-26 20:04:24 · 996 阅读 · 0 评论 -
2024年FGCS SCI2区TOP:多样性迁移策略量子粒子群算法DM-QPSO,深度解析+性能实测
粒子群算法因其简单高效,已成功应用于实际优化问题。然而,传统粒子群优化算法在复杂的高维优化问题中表现不佳,容易陷入局部最优。为了解决这一问题,本文提出了一种基于多样性迁移的量子粒子群算法(DM-QPSO),其引入了一种新的迁移机制,能够在种群中捕捉不同范围的粒子,并根据适应度值和种群位置共同决定迁移个体的选择。通过比较粒子的适应度值和平均汉明距离,偏离种群中心范围的粒子将被替换,从而优化种群的迭代方向。原创 2025-03-25 19:28:59 · 1043 阅读 · 0 评论 -
2021年ASOC SCI2区TOP:非线性混沌哈里斯鹰优化算法NCHHO,深度解析+性能实测
本文提出了一种非线性混沌哈里斯鹰优化算法(NCHHO),NCHHO算法通过引入混沌映射和非线性控制参数来提升HHO的优化性能。混沌映射的使用主要是为了增强算法的探索性,而非线性控制参数则帮助调整探索性与开发性之间的平衡。原创 2025-03-22 18:04:16 · 750 阅读 · 0 评论 -
2019年群智能 SCI1区TOP:基于Sigmoid加速系数混沌粒子群算法CPSOS,深度解析+性能实测
本文提出了一种基于Sigmoid加速系数混沌粒子群算法(CPSOS),CPSOS采用logistic映射生成良好分布的初始粒子,其提出了基于Sigmoid加速系数,以平衡初期的全局搜索能力与后期的全局收敛性。本文引入了两种不同的逐步变化和规则变化函数嵌入更新机制,并结合基于混沌的重初始化和高斯变异策略,在不同的进化阶段更新粒子,从而有效保持群体的多样性,避免局部最优解困境,继续探索解空间的潜在搜索区域。原创 2025-03-20 21:10:06 · 608 阅读 · 0 评论 -
2021年ESWA SCI1区TOP:均匀差分灰色进化算法GPEAed,深度解析+性能实测
受灰色预测理论的启发,本文提出了一种基于偶差灰色模型的进化算法,其利用偶差灰色模型开发了一种新的繁殖算子。繁殖算子将种群序列视为时间序列,使用灰色算子将从种群序列中选取的无序数据转化为具有近似指数规律的序列数据。基于生成的序列数据,利用偶差灰色模型构建指数模型。最后,繁殖算子根据指数模型的预测结果获得试验种群。原创 2025-03-19 17:51:53 · 868 阅读 · 0 评论 -
2023年ASOC SCI1区TOP:并行全局最优-最差粒子群算法GBWPSO,深度解析+性能实测
群体优化算法的应用范围非常广泛,但是高维度和更多决策变量使得这些优化问题变得更加复杂。因此,本文提出了一种全局最优-最差粒子群算法(GBWPSO),提供一个完全并行的算法版本。GBWPSO算法结合了PSO和Jaya算法,具有更高的并行性。原创 2025-03-18 19:27:05 · 1111 阅读 · 0 评论 -
2022年BKS SCI1区TOP:自适应加权差分进化SaWDE,深度解析+性能实测
许多进化计算方法被用于解决特征选择问题,但主要针对小规模问题,而大规模特征选择时常遇到局部最优停滞和数值不稳定的问题。因此,本文提出了一种自适应加权差分进化算法(SaWDE),其应对大规模特征选择的挑战。SaWDE方法首先采用多种群机制以提升种群多样性,然后引入一个自适应机制,从策略池中选取策略来捕捉数据集的不同特性。原创 2025-03-16 10:28:37 · 913 阅读 · 0 评论 -
2024年ASOC SCI1区TOP:灰狼算法GWO潜在修正,深度解析+性能实测
灰狼算法(GWO)是一种模拟灰狼领导层次和狩猎机制的优化算法,近年来受到了广泛关注。然而,研究表明,GWO的部分公式存在缺陷,且该算法仅在函数最优值为0时能够取得优异的结果。因此,本文对GWO的固有缺陷进行了探讨,并提出了几种修正变体以改进其性能。本文提出的三项主要修正包括:去除系数向量CCC、去除因子DDD的绝对值符号以及引入当前到猎物接近策略。原创 2025-03-15 10:30:57 · 661 阅读 · 0 评论 -
2020年SCI1区TOP:自适应粒子群算法MPSO,深度解析+性能实测
在专家系统中,复杂的优化问题通常具有非线性、非凸、多模态和不连续的特点。粒子群算法(PSO)作为一种高效且简单的优化算法,已广泛应用于解决这些实际问题。然而,如何避免早熟收敛并平衡PSO的全局探索能力和局部开发能力,仍然是一个待解决的挑战。因此,本文提出了一种自适应策略粒子群算法(MPSO),MPSO通过引入基于混沌的非线性惯性权重来平衡全局探索和局部开发能力,避免早熟收敛。MPSO采用了随机和主流学习策略,以及自适应位置更新策略和终止替换机制,从而增强了其解决复杂优化问题的能力。混沌惯性权重在PSO中,惯原创 2025-03-13 21:34:23 · 886 阅读 · 0 评论 -
2022年SCI1区TOP:信念空间和广义对立学习自适应差分进化算法ACDE/F,深度解析+性能实测
差分进化算法(DE)在解决复杂优化问题时常面临过早收敛和局部优化的挑战。为了解决这些问题,本文提出了一种自适应差分进化算法(ACDE/F),该算法结合了信念空间策略、广义对立学习策略和参数自适应策略。ACDE/F通过引入文化算法的思想和不同的变异策略到信念空间中,平衡了全局探索能力和局部优化能力。广义对立学习策略提高局部优化过程的收敛速度并增加种群的多样性。此外,ACDE/F提出了参数自适应调整策略,合理调整变异因子和交叉因子,以避免陷入局部最优。原创 2025-03-12 19:38:11 · 849 阅读 · 0 评论 -
2024年群智能SCI1区TOP:混沌可行性恢复粒子群算法CEPSO,深度解析+性能实测
本文研究了解决二阶段非线性固定费用运输问题(Two-stage NFCTP),该问题的特点是每条运输弧线都与固定费用和与运输量的平方成正比的变量费用相关联。由于涉及固定费用和非线性组件,问题被归类为NP-hard问题,因此本文提出了混沌可行性恢复粒子群算法(CEPSO),该算法引入非线性自适应惯性权重和加速度系数,以改善搜索过程中的探索和开发能力;集成十种混沌映射到加速度系数,进一步提升优化性能;采用可行性恢复机制,包括约束遵循调整和比例调整程序,确保生成的解始终满足可行性要求。原创 2025-03-11 23:03:06 · 994 阅读 · 0 评论 -
SCI1区TOP:集体信息驱动差分进化算法CIPDE,深度解析+性能实测
差分进化(DE)算法在处理全局优化问题时表现出了卓越的性能。DE的变异操作是唯一生成新候选解的过程,它通过组合现有解向量来形成潜在的新解。本研究提出了挑战传统方法的观点,反对仅使用单一最优向量,建议通过集体信息来增强DE的性能。我们提出使用mmm个最佳候选解的集体信息,通过线性组合这些最佳候选解的进化信息,形成差分向量的一部分用于变异操作。此外,集体信息还可以在交叉操作中发挥作用。原创 2025-03-10 11:52:12 · 632 阅读 · 0 评论 -
应用数学SCI2区TOP:多种群协同粒子群算法MCPSO,深度解析+性能实测
本文提出了多种群协同粒子群算法(MCPSO),该算法受自然生态系统中共生现象的启发。MCPSO采用主从模型结构,种群由一个主群体和多个从群体组成。从群体独立执行标准PSO或其变种,以维持粒子的多样性;而主群体则在自身知识的基础上,结合从群体的知识进行进化。根据主群体与从群体之间的协同进化关系,提出了两种MCPSO版本:竞争版本(COM-MCPSO)和协作版本(COL-MCPSO)。在竞争版本中,主群体通过对抗性场景来增强粒子;而在协作版本中,主群体则通过协同场景来促进粒子增强。原创 2025-03-08 10:52:19 · 879 阅读 · 0 评论 -
SCI1区TOP:自适应学习粒子群算法SLPSO,深度解析+性能实测
粒子群算法(PSO)是一种基于种群的随机搜索方法,广泛应用于科学和工程领域的连续空间优化问题,并已证明其高效性和有效性。许多实际问题的往往未知,因此依赖试错法寻找最合适PSO变体会导致较高的计算成本。本文提出了一种自适应学习粒子群算法(SLPSO),SLPSO结合了四种不同的PSO搜索策略,并通过概率模型描述每种策略被选择以更新粒子的概率,该模型能够根据策略在过去几代中的表现,自动调整用来提升搜索效率和优化结果。原创 2025-03-06 22:04:57 · 928 阅读 · 0 评论 -
SCI2区TOP EAAI:多群体自适应协同粒子群算法MSCPSO,深度解析+性能实测
本文提出了一种基于四个子群体的多群体自适应协同粒子群算法(MSCPSO),该算法通过多种策略有效避免了陷入局部最优的问题,提升了多样性,并能够获得更优解。MSCPSO算法中每个子群体的粒子共享唯一的全局历史最佳解,增强了粒子之间的协作能力。此外,粒子的惯性权重根据所有粒子的适应度信息进行调整,并采用自适应策略控制历史信息的影响,从而提高了搜索能力。为有效平衡全局探索与局部开发,粒子通过共享信息与其他粒子保持合作,并指导自身评估。原创 2025-03-03 19:33:11 · 1079 阅读 · 0 评论 -
2023年SCI1区TOP:混合差分灰狼算法HGWODE,深度解析+性能实测
无人机的自主导航在灾难场景中具有重要意义。为了解决无人机路径规划问题,本文提出了一种基于灰狼优化算法(GWO)和差分进化算法(DE)的混合算法(HGWODE)。HGWODE算法通过有效的协作,平衡了局部开发与全局探索的能力,其改进了GWO的位置更新公式,使得alpha、beta和delta狼围绕alpha狼进行搜索,而omega狼则围绕前三名狼进行搜索,从而增强了开发能力。DE算法中采用了基于排名的变异策略,进一步促进了局部开发的同时保持了全局探索能力。原创 2025-03-02 18:09:22 · 783 阅读 · 0 评论 -
2020年SCI1区TOP:异质综合学习和动态多群体粒子群算法HCLDMS-PSO,深度解析+性能实测
本文提出了一种异质综合学习和动态多群体粒子群算法(HCLDMS-PSO),该算法在综合学习(CL)策略的基础上,通过利用整个种群的全局最优经验来生成开发性子种群。并且,HCLDMS-PSO设计了修改后的动态多群体(DMS)策略来构建探索性子种群。传统的DMS策略中,所有子群体使用相同的线性递减惯性权重,这会限制其探索能力。为此,本文首先对DMS子群体进行分类,然后为不同子群体设计非线性自适应递减惯性权重,并引入非均匀变异操作符以增强探索性。原创 2025-02-28 19:46:39 · 968 阅读 · 0 评论 -
2024年群智能SCI1区:多策略集成粒子群算法GSRPSO,深度解析+性能实测
本文提出了一种新的多策略集成粒子群算法(GSRPSO),用于提高宫颈癌图像的多阈值分割精度。GSRPSO通过四种策略协同工作,增强了算法的优化能力。动态参数平衡了探索与开发阶段,增益共享策略和随机位置更新策略加速了收敛过程并增加了种群多样性,垂直交叉变异策略则提升了局部开发能力,避免了算法的早期停滞。原创 2025-02-27 17:03:54 · 306 阅读 · 0 评论 -
2023年群智能SCI1区TOP:精英档案粒子群算法EAPSO,深度解析+性能实测
粒子群优化(PSO)是一种简单而有效的元启发式算法,但在处理复杂多峰问题时,可能由于所有粒子使用相同的搜索策略而导致过早收敛,进而失去搜索空间的多样性。为了提高PSO的全局搜索能力,本文提出了一种基于精英档案粒子群优化算法(EAPSO)。EAPSO仅依赖种群规模和终止条件即可执行搜索任务,这使得它在操作上区别于其他PSO变种。EAPSO的结构清晰,首先通过建立三种类型的精英档案,分别保存不同层次的粒子,设计了六种更新粒子位置的学习策略,通过重用这些精英档案中的粒子来进行搜索。原创 2025-02-24 19:37:37 · 530 阅读 · 0 评论