【智能算法】卷尾猴搜索算法(CapSA)原理及实现

在这里插入图片描述


1.背景

2021年,M Braik等人受到自然界卷尾猴觅食行为启发,提出了卷尾猴搜索算法(Capuchin Search Algorithm,CapSA)。

2.算法原理

2.1算法思想

CapSA种模拟卷尾猴在森林中游荡觅食行为,是领导者和跟随者类型。领导者负责发现食物区域,跟随者在该区域寻找食物的具体位置; 卷尾猴在觅食过程中,依据自身位置与角色、历史最好位置、种群的全局最好位置及位置更新策略不断更新自身位置,直到最终获取食物后,停止食物的搜索。
在这里插入图片描述

2.2算法过程

初始化种群后,计算种群适应度,依据适应度降幂排列卷尾猴种群中的卷尾猴,前 1 /2 只卷尾猴构成领导者种群 A,后1 /2 只卷尾猴构成跟随者种群 B。

卷尾猴速度更新

卷尾猴i更新速度:
ν i ( t + 1 ) = ρ ν i ( t ) + τ a 1 ( x b e s t i − x i ( t ) ) r 1 + τ a 2 ( F − x i ( t ) ) r 2 (1) \begin{aligned}\nu_{i}( t + 1) &=\rho \nu_{i}( t) + \tau a_{1}( x_{best}^{i} - x_{i}( t) ) r_{1} +\tau a_{2}( F - x_{i}( t) ) r_{2}\end{aligned}\tag{1} νi(t+1)=ρνi(t)+τa1(xbestixi(t))r1+τa2(Fxi(t))r2(1)
其中,xibest 为卷尾猴 i 的历史最优位置; F 为所有卷尾猴的全局最好位置。(PS:跟粒子群PSO一致🤣
惯性系数 ρ平衡卷尾猴的全局和局部搜索能力:
τ = β 0 e − β 1 ( t T ) β 2 (2) \tau=\beta_0 e^{-\beta_1( \frac tT) \beta_2}\tag{2} τ=β0eβ1(Tt)β2(2)

领导者种群位置更新

更新策略:
x i j ( t + 1 ) = { τ [ [ b j + ε ( u b j − l b j ) ] 0.1 < ε ⩽ 0.2 F + P e f P b f v i j ( t ) 2 sin ⁡ ( 3 r ) g 0.2 < ε ⩽ 0.3 x i j ( t ) + v i j ( t ) 0.3 < ε ⩽ 0.5 F + τ P b j sin ⁡ ( 3 r ) 0.5 < ε ⩽ 0.75 F + τ P b j ( v i j ( t ) − v i , j − 1 ( t ) ) 0.75 < ε ⩽ 1.0 (3) \begin{aligned}&x_{ij}( t + 1) =&\begin{cases}\tau [ [ b_j + \varepsilon( u b_j - l b_j) ]&0.1 < \varepsilon \leqslant 0.2\\F + \frac{P_{ef} P_{bf} v_{ij}( t )^2\sin( 3r)}{g}&0.2 < \varepsilon \leqslant 0.3\\x_{ij}( t ) + v_{ij}( t )&0.3 < \varepsilon \leqslant 0.5\\F + \tau P_{bj}\sin( 3r)&0.5 < \varepsilon \leqslant 0.75\\F + \tau P_{bj}( v_{ij}( t ) - v_{i,j-1}( t ) )&0.75 < \varepsilon \leqslant 1.0\end{cases}\end{aligned}\tag{3} xij(t+1)= τ[[bj+ε(ubjlbj)]F+gPefPbfvij(t)2sin(3r)xij(t)+vij(t)F+τPbjsin(3r)F+τPbj(vij(t)vi,j1(t))0.1<ε0.20.2<ε0.30.3<ε0.50.5<ε0.750.75<ε1.0(3)
其中,Pbf 是领导者卷尾猴在跳跃运动中提供平衡的概率,Pef 为弹性系数。

跟随者种群位置更新

种群 B 中位置为xi( t) 的跟随者 i 更新后的位置是介于自身位置和上一时刻位置的中间位置:
x i ( t + 1 ) = 1 2 ( x i ( t ) + x i − 1 ( t ) ) (4) x_i( t + 1) =\frac{1}{2}( x_i( t) + x_{i-1}( t) )\tag{4} xi(t+1)=21(xi(t)+xi1(t))(4)
PS:有点像灰狼GWO🤣

伪代码

在这里插入图片描述

3.结果展示

在这里插入图片描述

4.参考文献

[1] Braik M, Sheta A, Al-Hiary H. A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm[J]. Neural computing and applications, 2021, 33(7): 2515-2547.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值