11 - YOLO算法二 (目标检测)

要点:


三 YOLO  v3

3.1 Darknet-53 (backbone)

3.2 目标边界框的预测

将预测的边界框中心限制在当前cell中, s(x) = Sigmoid(x) 。

3.3 正负样本的匹配

3.4 损失的计算

3.4.1 置信度损失 (Binary Cross Entropy)

其中 o_i \epsilon [0, 1],   表示预测目标边界框与真实目标边界框的IOU c为预测值, c_ic通过Sigmoid函数得到的预测置信度, N为正负样本个数.

3.4.2 类别损失 (Binary Cross Entropy)

3.4.3 类别损失

3.4.4 定位损失

3.5 YOLOv3 SPP

3.5.1 Mosaic图像增强

3.5.2 SPP模块

实现了不同尺度的特征融合。

注意:这里的SPPSPPnet中的SPP结构不一样,Spatial Pyramid Pooling

后续:  01-yolo算法_处女座_三月的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值