✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
无人机作为一种新型飞行器,在近年来得到了广泛应用,例如航拍、物流运输、农业植保等。四旋翼无人机作为最常见的无人机类型,因其结构简单、操控灵活、成本低廉等优势,成为研究的热点。然而,四旋翼无人机在实际飞行过程中会受到外界环境干扰、风力影响以及自身参数变化等因素的影响,导致飞行轨迹偏差,甚至发生危险。因此,设计一种鲁棒性强、控制精度高的控制策略,对于保证四旋翼无人机的稳定飞行至关重要。
滑模控制作为一种非线性控制方法,具有对系统参数变化和外部扰动具有较强鲁棒性的特点,近年来在无人机控制领域得到了广泛应用。反步法是一种系统化的非线性控制方法,能够有效地解决复杂非线性系统的控制问题。将滑模控制和反步法结合,可以有效提高四旋翼无人机的控制性能,使其能够在复杂环境下稳定飞行。
6. 结论
基于反步法的四旋翼滑模控制是一种鲁棒性强、控制精度高的控制策略,能够有效提高四旋翼无人机的控制性能。该方法通过将滑模控制和反步法结合,可以实现对无人机位置和姿态的精确控制,并能够有效应对外部环境扰动和自身参数变化。仿真实验结果表明,该控制策略能够保证四旋翼无人机在复杂环境下稳定飞行,并能够实现精准的轨迹跟踪。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类