【滤波跟踪】基于拓展卡尔曼滤波实现动态磁力计标定+九轴融合动态架构的九轴惯性融合附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🎁  私信更多全部代码、Matlab仿真定制

🔥 内容介绍

摘要: 惯性测量单元(IMU)在导航、姿态估计、运动追踪等领域具有广泛的应用。然而,磁力计易受环境磁场干扰,导致姿态估计精度下降。本文提出一种基于拓展卡尔曼滤波(EKF)的动态磁力计标定方法,并将其与九轴融合动态架构相结合,实现高精度的九轴惯性融合。该方法利用EKF对磁力计的硬铁、软铁效应进行实时估计和补偿,同时融合加速度计、陀螺仪和磁力计数据,动态优化姿态解算。实验结果表明,该方法在动态环境中能有效提升姿态估计的准确性和鲁棒性,为相关领域的应用提供了有力的技术支撑。

1. 引言

惯性测量单元(IMU)集成了加速度计、陀螺仪和磁力计等多种传感器,能够感知载体的加速度、角速度和磁场强度,为实现姿态估计、位置追踪和运动分析提供了重要的基础数据。尤其是在全球定位系统(GPS)信号受限或不可用的情况下,IMU成为了自主导航和定位的关键组件。然而,IMU传感器也面临诸多挑战,其中,磁力计的测量精度容易受到外部磁场干扰,如电子设备、磁性材料以及地球磁场自身的局部变化等,这些干扰会导致磁力计测量值偏离真实值,进而影响姿态解算的准确性。

传统的磁力计标定方法,如静态椭球拟合,通常需要在无干扰的静态环境下进行,这在实际动态应用中很难满足。此外,磁力计的误差通常包括硬铁效应和软铁效应,前者是由传感器周围的永久磁性材料引起的常值偏移,后者是由传感器周围的磁导率变化引起的比例偏移和方向扭曲。这些效应随着环境的变化而变化,因此需要动态标定方法来实时校正。

为了解决上述问题,本文提出了一种基于拓展卡尔曼滤波(EKF)的动态磁力计标定方法,并将其与九轴融合动态架构相结合,实现高精度的九轴惯性融合。该方法利用EKF对磁力计的硬铁、软铁效应进行实时估计和补偿,并与加速度计、陀螺仪数据进行动态融合,从而实现更准确的姿态解算。本文首先介绍了相关的理论基础,然后详细阐述了所提出的动态标定和融合方法,最后通过实验验证了该方法的有效性。

2. 理论基础

2.1 磁力计误差模型

磁力计的测量值通常包含真实地磁场强度,以及硬铁效应和软铁效应。其数学模型可以表示为:

m<sub>measured</sub> = S(m<sub>true</sub>) + b

其中,m<sub>measured</sub> 是磁力计的测量值,m<sub>true</sub> 是真实的地磁场强度,S 是软铁效应矩阵,b 是硬铁效应偏移向量。

  • 硬铁效应:指传感器周围永久磁性材料造成的常值偏移,可以通过一个三维向量 b 来表示。

  • 软铁效应:指传感器周围的铁磁性材料改变地磁场方向和强度,可以使用一个3x3的对称矩阵 S 来表示。

2.2 拓展卡尔曼滤波 (EKF)

拓展卡尔曼滤波是一种非线性状态估计器,它通过线性化系统模型,将卡尔曼滤波应用于非线性系统。EKF 包括预测和更新两个主要步骤:

  • 预测步骤: 利用上一时刻的状态估计和控制输入,预测当前时刻的状态和误差协方差矩阵。

  • 更新步骤: 利用当前时刻的测量值,修正预测的状态估计和误差协方差矩阵,得到最优的状态估计。

在本文中,我们将使用EKF来估计磁力计的误差参数,并融合来自不同传感器的信息,从而获得更精确的姿态估计。

3. 基于拓展卡尔曼滤波的动态磁力计标定与九轴融合动态架构

3.1 系统状态模型

为了实现动态标定和融合,我们定义系统的状态向量 x 为:

x = [ q<sup>T</sup> b<sup>T</sup> s<sup>T</sup>]<sup>T</sup>

其中,

  • q 是四元数,表示载体的姿态。

  • b 是硬铁效应偏移向量,表示三个方向的磁场偏移。

  • s 是软铁效应矩阵的非对角元素以及对角线元素,可以表示为: s = [ s<sub>12</sub> s<sub>13</sub> s<sub>23</sub> s<sub>11</sub> s<sub>22</sub> s<sub>33</sub>]<sup>T</sup>

系统状态的演化模型可以表示为:

x<sub>k+1</sub> = f(x<sub>k</sub>, ω<sub>k</sub>, Δt) + w<sub>k</sub>

其中,

  • f 是非线性状态转移函数,它根据上一时刻的状态 x<sub>k</sub>、角速度 ω<sub>k</sub> 和时间间隔 Δt,来预测当前时刻的状态 x<sub>k+1</sub>。

  • w<sub>k</sub> 是系统噪声,它模拟了状态转移过程中的不确定性。

3.2 测量模型

系统的测量模型包括加速度计测量值、磁力计测量值和陀螺仪测量值。

  • 加速度计测量模型: 考虑到地球重力的影响,加速度计测量值可以表示为:
    a<sub>measured</sub> = R(q) g + v<sub>a</sub>

    其中,R(q) 是根据四元数 q 计算得到的旋转矩阵,g 是地球重力向量,v<sub>a</sub> 是加速度计的噪声。

  • 磁力计测量模型: 结合硬铁和软铁效应模型,磁力计测量值可以表示为:
    m<sub>measured</sub> = S(s) R(q) m<sub>earth</sub> + b + v<sub>m</sub>

    其中,m<sub>earth</sub> 是地球磁场向量,v<sub>m</sub> 是磁力计噪声。

  • 陀螺仪测量模型: 陀螺仪测量的是角速度,可以表示为:
    ω<sub>measured</sub> = ω + v<sub>ω</sub>
    其中,ω 是真实的角速度, v<sub>ω</sub> 是陀螺仪的噪声。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值