【时间序列预测】基于非线性时间序列预测的稀疏局部线性和邻域嵌入研究 附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

时间序列预测作为数据挖掘和统计分析领域的重要分支,在金融、气象、工程控制等诸多领域都有着广泛的应用前景。传统的时间序列预测方法,如ARIMA模型、指数平滑等,通常假设序列具有线性或近似线性的特征,在面对复杂、非线性时间序列时往往难以取得满意的预测精度。因此,针对非线性时间序列的预测方法研究一直是学术界和工业界关注的热点。近年来,基于邻域嵌入理论的非线性时间序列预测方法因其能够有效捕捉时间序列的局部非线性特征而受到了广泛关注。本文将围绕“基于非线性时间序列预测的稀疏局部线性和邻域嵌入研究”这一主题,深入探讨利用稀疏局部线性和邻域嵌入方法提升非线性时间序列预测精度的可行性和有效性。

1. 背景与意义

非线性时间序列广泛存在于现实世界中,例如金融市场的价格波动、大气环流的变化、以及生物信号的动态变化等。这些序列的复杂性和非线性特征使得传统的线性模型难以准确捕捉其动态规律,导致预测精度下降。传统的非线性时间序列预测方法,如神经网络、支持向量机等,虽然具有强大的非线性拟合能力,但也存在着参数调节困难、易陷入局部最优解、以及过拟合等问题。

邻域嵌入算法是一种有效的降维和非线性特征提取方法,其基本思想是假设高维数据点在其局部邻域内具有线性或近似线性的结构。通过寻找邻域内数据点的线性或非线性关系,可以将高维数据映射到低维空间,从而提取出数据的本质特征。将邻域嵌入算法应用于时间序列预测,可以有效地捕捉时间序列的局部非线性特征,从而提高预测精度。

在邻域嵌入算法中,选择合适的邻域大小和权重分配策略至关重要。传统的邻域嵌入方法通常采用固定邻域大小或均匀权重分配,这可能无法适应时间序列的动态变化和局部非线性特征的差异性。因此,研究基于稀疏局部线性的邻域嵌入方法,能够更加灵活地适应时间序列的复杂性,提高预测精度。

2. 稀疏局部线性嵌入 (Sparse Local Linear Embedding, SLLE)

局部线性嵌入 (Local Linear Embedding, LLE) 是一种经典的邻域嵌入算法,其核心思想是假设每个数据点都可以由其邻域内的数据点线性重构,并且这种局部线性关系在低维空间中保持不变。然而,传统的LLE算法通常采用稠密的权重分配,即每个邻域点都会参与重构过程。这可能导致重构误差增大,并且容易受到噪声的影响。

稀疏局部线性嵌入 (SLLE) 算法在LLE的基础上引入了稀疏性约束,即限制每个数据点只由少数几个邻域点进行重构。这种稀疏性约束可以有效地减少重构误差,提高算法的鲁棒性,并增强其对噪声的抵抗能力。SLLE算法通过求解一个稀疏优化问题来获得重构权重,该优化问题通常采用L1正则化或Elastic Net正则化等方法进行求解。

将SLLE应用于非线性时间序列预测,可以有效地捕捉序列的局部非线性特征。具体步骤如下:

  • 构建延迟嵌入空间:

     将时间序列进行延迟嵌入,构建高维的特征空间。

  • 寻找邻域:

     对于每个数据点,在高维空间中寻找其k近邻。

  • 求解稀疏重构权重:

     利用SLLE算法,求解每个数据点由其邻域点进行稀疏重构的权重。

  • 构建映射矩阵:

     利用重构权重,构建高维空间到低维空间的映射矩阵。

  • 降维:

     将高维数据点映射到低维空间,获得低维表示。

  • 预测:

     在低维空间中,利用线性或非线性模型进行预测。

3. 基于自适应邻域大小的邻域嵌入

除了稀疏性约束之外,邻域大小的选择也是影响邻域嵌入算法性能的关键因素。传统的邻域嵌入算法通常采用固定的邻域大小,但这可能无法适应时间序列的动态变化和局部非线性特征的差异性。例如,在时间序列变化剧烈的区域,采用较小的邻域大小可以更好地捕捉局部特征;而在时间序列变化平缓的区域,采用较大的邻域大小可以提高算法的稳定性。

因此,研究基于自适应邻域大小的邻域嵌入方法具有重要的意义。一种常用的方法是根据时间序列的局部密度或局部方差来动态调整邻域大小。例如,在局部密度较高的区域,可以采用较小的邻域大小;而在局部密度较低的区域,可以采用较大的邻域大小。另一种方法是根据预测误差的大小来动态调整邻域大小。例如,在预测误差较大的区域,可以减小邻域大小,以提高算法的灵活性;而在预测误差较小的区域,可以增大邻域大小,以提高算法的稳定性。

4. 结合稀疏局部线性和自适应邻域嵌入的策略

将稀疏局部线性嵌入和自适应邻域嵌入方法相结合,可以进一步提高非线性时间序列的预测精度。具体策略如下:

  • 自适应邻域选择:

     首先,根据时间序列的局部密度或局部方差,自适应地选择每个数据点的邻域大小。

  • 稀疏重构权重求解:

     然后,利用SLLE算法,求解每个数据点由其邻域点进行稀疏重构的权重。

  • 融合降维:

     结合自适应邻域大小和稀疏重构权重,进行降维操作,获得低维表示。

  • 模型构建与预测:

     在低维空间中,构建预测模型,并进行时间序列预测。

这种结合策略的优势在于:

  • 灵活性:

     自适应邻域大小可以灵活地适应时间序列的动态变化和局部非线性特征的差异性。

  • 鲁棒性:

     稀疏重构权重可以有效地减少重构误差,提高算法的鲁棒性,并增强其对噪声的抵抗能力。

  • 精度:

     将两种方法相结合,可以有效地捕捉时间序列的局部非线性特征,从而提高预测精度。

5. 实验验证与分析

为了验证上述方法的有效性,需要进行大量的实验验证和分析。实验数据可以包括人工合成的非线性时间序列,以及真实的金融、气象、工程控制等领域的时间序列数据。实验对比方法可以包括传统的线性时间序列预测方法(如ARIMA模型),以及其他的非线性时间序列预测方法(如神经网络、支持向量机)。

实验评价指标可以包括均方误差 (Mean Squared Error, MSE)、均方根误差 (Root Mean Squared Error, RMSE)、平均绝对误差 (Mean Absolute Error, MAE) 等。通过比较不同方法的预测精度,可以评估基于稀疏局部线性和邻域嵌入的方法在非线性时间序列预测中的优势。

此外,还需要对实验结果进行深入的分析,例如:

  • 参数敏感性分析:

     分析SLLE算法中的稀疏性约束参数、邻域大小参数等对预测精度的影响。

  • 时间复杂度分析:

     分析不同算法的时间复杂度,评估其在实际应用中的可行性。

  • 可视化分析:

     将高维数据点降维到低维空间后,进行可视化分析,观察其结构特征,从而更好地理解算法的运行机制。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值