✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
自动引导车(Automated Guided Vehicle, AGV)作为现代物流和制造业中不可或缺的一部分,其智能化程度直接影响着生产效率和运营成本。AGV的核心技术之一是路径规划,它决定了AGV如何安全、高效地从起点到达目标点。在众多的路径规划算法中,A算法凭借其高效性和完备性,成为了AGV路径规划领域中的一种主流选择。本文将深入探讨基于A算法的AGV路径规划,包括其基本原理、算法实现、关键要素以及在实际应用中的优势与挑战。
A*算法的基本原理
A算法是一种启发式搜索算法,旨在寻找图中从起点到目标点的最短路径。它通过评估每个节点的“启发式代价”,并选择代价最小的节点进行扩展,从而在搜索空间中高效地找到最优路径。A算法的关键在于其评估函数f(n),定义如下:
f(n) = g(n) + h(n)
其中:
- g(n)
代表从起点到当前节点n的实际代价。对于AGV路径规划而言,通常指的是实际行驶距离或时间。
- h(n)
代表从当前节点n到目标点的估计代价,也被称为启发式函数。h(n)的选取对算法的效率至关重要,它必须是可接受的启发式函数,即h(n)不能高估实际代价。常见的启发式函数包括曼哈顿距离、欧几里得距离和对角线距离。
A*算法的工作流程可以概括为以下几个步骤:
- 初始化:
创建两个列表:开放列表(Open List)和关闭列表(Closed List)。开放列表用于存放待扩展的节点,关闭列表用于存放已经扩展过的节点。将起点加入开放列表,并计算起点的f(n)值。
- 循环搜索:
从开放列表中选取f(n)值最小的节点作为当前节点。
- 扩展节点:
将当前节点从开放列表移动到关闭列表。
- 检查相邻节点:
遍历当前节点的相邻节点。对于每个相邻节点:
-
如果相邻节点在关闭列表中,则忽略。
-
如果相邻节点不在开放列表中,则将其加入开放列表,计算其g(n)、h(n)和f(n)值,并将当前节点设置为其父节点。
-
如果相邻节点已经在开放列表中,则检查通过当前节点到达该相邻节点的g(n)值是否小于其原来的g(n)值。如果是,则更新其g(n)、h(n)和f(n)值,并将当前节点设置为其父节点。
-
- 检查是否到达目标点:
如果当前节点是目标点,则从目标点沿着父节点回溯,得到最优路径,算法结束。
- 重复步骤2-5:
如果开放列表为空,则表示没有找到路径,算法结束。
A*算法在AGV路径规划中的实现
在AGV路径规划中,A*算法的实现需要考虑以下几个关键要素:
- 环境建模:
AGV的运行环境需要进行建模,将其离散化为图结构。常见的环境建模方法包括栅格地图、拓扑地图和特征地图。
- 栅格地图:
将环境划分为均匀的网格,每个网格代表一个节点,节点之间的连通性取决于相邻关系。简单易实现,但对存储空间要求较高。
- 拓扑地图:
将环境中的关键位置(如路口、仓库等)作为节点,节点之间的连线代表路径。存储空间小,但精度较低。
- 特征地图:
基于环境中的特征(如墙壁、障碍物等)进行建模,精度高,但建模复杂。
- 栅格地图:
- 代价函数设计:
代价函数g(n)和h(n)的设计需要结合AGV的实际运行环境和任务需求。例如,在考虑能源消耗的情况下,可以根据坡度、路面状况等因素调整代价。
- 启发式函数选择:
启发式函数h(n)的选择直接影响算法的效率。常用的启发式函数包括:
- 曼哈顿距离:
h(n) = |x2 - x1| + |y2 - y1|,适用于AGV只能沿水平或垂直方向移动的情况。
- 欧几里得距离:
h(n) = √((x2 - x1)² + (y2 - y1)²),适用于AGV可以沿任意方向移动的情况。
- 对角线距离:
适用于AGV可以沿水平、垂直和对角线方向移动的情况。
- 曼哈顿距离:
- 避障策略:
AGV在实际运行中需要避开障碍物。在A*算法中,可以通过以下方式实现避障
⛳️ 运行结果
🔗 参考文献
[1] 杨璐,汪博涵,张雪洁.基于A*算法的AGV路径规划研究[J].公路与汽运, 2014, 000(004):47-49.DOI:10.3969/j.issn.1671-2668.2014.04.014.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇